Relativistic Study of the Spinless Salpeter Equation with a Modified Hylleraas Potential

  • A. D. Antia Department of Physics, Faculty of Science, University of Uyo
  • I. B. Okon Department of Physics, Faculty of Science, University of Uyo
  • E. B. Umoren Department of Physics, Faculty of Science, University of Uyo
  • C. N. Isonguyo Department of Physics, Faculty of Science, University of Uyo
Keywords: Schr¨odinger wave equation, modified Hylleraas potential, spinless Salpeter equation, Nikiforov–Uvarov method, potential barrier

Abstract

We have solved the Spinless Salpeter Equation (SSE) with a modified Hylleraas potential within the Nikiforov–Uvarov method. The energy eigenvalues and the corresponding wave functions for this system expressed in terms of the Jacobi polynomial are obtained. With the help of an approximation scheme, the potential barrier has been evaluated. The results obtained can be applied in nuclear physics, chemical physics, atomic physics, molecular chemistry, and other related areas, for example, can be used to study the binding energy and interaction of some diatomic molecules. By adjusting some potential parameters, our potential reduces to the Rosen–Morse and Hulthen potentials. We have present also the numerical data on the energy spectra for this system.

References

E.M. Zayed, S.A. Ibrahim. Exact solutions of nuclear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett.29, 6 (2009).

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi. Duffin–Kemmer–Petiau equation under a scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011). https://doi.org/10.1103/PhysRevC.84.064003

W. Lucha, F.F. Schoberl. Semi-relativistic treatment of bound state. Int. J. Mod. Phys. A 17, 2333 (2002).

B.I. Ita, A.I. Ikeuba. Solutions to the Schr?odinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov–Uvarov method. J. At. and Mol. Phys. 20, 1 (2013).

P. Maris, C.D.Robert. Dyson–Schwinger equations: A tool for hadron physics. Int. J. Mod. Phys. E 12, 197 (2003). https://doi.org/10.1142/S0218301303001326

P. Maris, C.D. Robert. п? and K-meson Bethe–Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997). https://doi.org/10.1103/PhysRevC.56.3369

R. Hall, W. Lucha, F.F. Schoberl. Discrete spectra of semirelativistic Hamiltonians. Int. J. Mod. Phys. A. 18, 2657 (2003). https://doi.org/10.1142/S0217751X0301406X

R. Hall, W.Lucha. Schr?odinger secant lower bounds to semi-relativistic eigen values. Int. J. Mod Phys. A.22, 1899 (1994). https://doi.org/10.1142/S0217751X07036312

G.C. Wick. Properties of Bethe–Salpeter wave functions. Phys. Rev. 96, 1124 (1954). https://doi.org/10.1103/PhysRev.96.1124

E.E. Salpeter, H.A. Bethe. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232 (1951). https://doi.org/10.1103/PhysRev.84.1232

S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics approach. Chin. Phys. B 22, 060303 (2013). https://doi.org/10.1088/1674-1056/22/6/060303

H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo.Spectrum of hyperbolic potential via SUSYQM within the semi-relativistic formalism. Chin. J. Phys. 50, 783 (2012).

S. Zarrinkamar, A.A. Rajabi, H. Hassanabadi. Solution of the two-body Salpeter equation under an exponential potential for any l state. Few-Body Systems 52, 165 (2012). https://doi.org/10.1007/s00601-011-0272-3

A.N. Ikot, C.N. Isonguyo, Y.E. Chad-Umoren, H. Hassanabadi. Solution of spinless Salpeter equation with generalised Hulthen potential using SUSYQM. Acta Phys. Polonica A 127, 674 (2015). https://doi.org/10.12693/APhysPolA.127.674

A.D.Antia, A.N. Ikot, I.O. Akpan, O.A. Awoga. Approximate solution of the Klein–Gordon equation with unequal scalar and vector modified Hylleraas potential. Ind. J. Phys. 87, 155 (2013). https://doi.org/10.1007/s12648-012-0210-3

F. Yasuk, M.K. Bahar. Approximate solution of Dirac equation with position-dependent mass for the Hulthen potential by the asymptotic iteration method. Phys. Scr. 85, 045004 (2012). https://doi.org/10.1088/0031-8949/85/04/045004

H. Hassanabadi, E. Maghsodi, S. Zarrinkamar. Relativistic symmetries of Dirac equation and the Tietz potential. Euro. Phys. J. Plus 127, 31 (2012). https://doi.org/10.1140/epjp/i2012-12031-1

O. Mustapha, R. Sever. Shifted 1/N for the Klein–Gordon equation with vector and scalar potentials. Phys. Rev. A 44, 4142 (1991). https://doi.org/10.1103/PhysRevA.44.4142

A.D. Antia, E.E. Ituen, H.P. Obong, C.N. Isonguyo. Analytical solution of the modified Coulomb potential using the factorisation method. Int. J. Rec. Adv. Phys. 4, 55 (2015). https://doi.org/10.14810/ijrap.2015.4104

S.M. Ikhdair, R. Sever. On solutions of the Schr?odinger equation for some molecular potentials: wave function ansatz. Cent. Eur. J. Phys. 6, 697 (2008).

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, A.A. Rajabi. Duffin–Kemmer–Petiau equation under scalar Coulomb interaction. Phys. Rev. C 84, 064003 (2011). https://doi.org/10.1103/PhysRevC.84.064003

C. Tezan, R. Sever. A general approach for the exact solution of the Schr?odinger equation. Int. J. Theor. Phys. 48, 337 (2009). https://doi.org/10.1007/s10773-008-9806-y

A.F. Nikiforov, V.B. Uvarov. Special Functions of Mathematical Physics (Birkh?auser, 1998).

R.L. Greene, C. Aldrich. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 14, 2363 (1976). https://doi.org/10.1103/PhysRevA.14.2363

A.N. Ikot. Solution to the Klein–Gordon equation with equal scalar and vector modified Hylleraas plus exponential Rosen–Morse potential. Chin. Phys. Lett. 29, 060307 (2012). https://doi.org/10.1088/0256-307X/29/6/060307

S. Debnath, B. Biswas. Analytical solution of the Klein–Gordon equation for Rosen–Morse potential via asymptotic iteration method. EJTP 26, 191 (2012).

A.N. Ikot, L.E. Akpabio, E.J. Uwah. Bound state solution of the Klein–Gordon equation with Hulthen potential. Elect. J. Theor. 8, 225 (2011).

K.M. Khanna, G.F. Kanyeki, S.K. Rotich, P.K. Torongey, S.E. Ameka. Anharmonic perturation of neutron-proton pairs by the unpaired neutron in heavy finite nuclei Ind. J. Pure and Appl. Phys. 48, 7 (2010).

Published
2019-01-30
How to Cite
Antia, A., Okon, I., Umoren, E., & Isonguyo, C. (2019). Relativistic Study of the Spinless Salpeter Equation with a Modified Hylleraas Potential. Ukrainian Journal of Physics, 64(1), 27. https://doi.org/10.15407/ujpe64.1.27
Section
General physics