SPR in Cesium Halide Thin Films Due to Embedded Elliptic Cesium Metal Nano-Particles

  • Kuldeep Kumar Department of Physics, S.G.T.B. Khalsa College, University of Delhi
  • P. Arun Material Science Research Lab, S.G.T.B. Khalsa College, University of Delhi
Keywords: alkali halides, thin films, X-ray diffraction, UV-visible spectroscopy

Abstract

Cesium nanorods embedded in cesium halides (CsCl, CsBr, and CsI) show surface plasmon resonance (SPR) absorption peaks. The size and shape of these cesium nanorods in the cesium halide matrix evolve with time, which gives some uncontrollable data for comparing with the theory. The theory used here was developed by R. Gans. It leads to the good match between experiment and theory for Cs–Cs halide nanocomposites.

References


  1. S. Asaka, M. Itoh, M. Kamada. Ultraviolet light amplification within a nanometer-sized layer. Phys. Rev. B 63, 081104(R) (2001).

  2. M. Cremona, J.A.M. Perira, S. Pelli, G.C. Righini. Optical waveguides produced in LiF by MeV ion beam bombardment. Appl. Phys. Lett. 81, 4103 (2002).
    https://doi.org/10.1063/1.1524302

  3. H. Fujita, K. Yamauchi, A. Akasaka, H. Irie, S. Masunaga. Pressure dependence of direct band gap at ? point in solids. J. Phys. Soc. Japan 68, 1994 (1999).
    https://doi.org/10.1143/JPSJ.68.1994

  4. P.V. Mitchell, D.A. Wiegand, R. Simoluchowski. Formation of F-centers in KCl by X-rays. Phys. Rev. 121, 484 (1961).
    https://doi.org/10.1103/PhysRev.121.484

  5. B.R. Sever, N. Kristianpollar, F.C. Brown. F-center production in alkali halide crystals by monochromatic X-ray and ultraviolet radiation. Phys. Rev. B 34, 1257 (1986).
    https://doi.org/10.1103/PhysRevB.34.1257

  6. J.R. Maldonato, Z. Liu, D.H. Dowell, R.E. Kirby, Y. Sun, P. Pianetta, F. Pease. Electron sources utilizing thin CsBr coatings. Microelectronic Engineering 86, 529 (2009).
    https://doi.org/10.1016/j.mee.2008.11.063

  7. A. Buzulutskov, E. Shafer, A. Breskin, R. Chechik, M. Prager. The protection of K–Cs–Sb photocathodes with CsBr films. Nucl. Instr. and Meth. A 400, 173 (1997).
    https://doi.org/10.1016/S0168-9002(97)00990-X

  8. B.K. Singh, E. Shefer, A. Breskin, R. Chechik, N. Arraham. CsBr and CsI UV photocathodes: New results on quantum efficiency and aging. Instr. & Meth. A 454, 364 (2000).
    https://doi.org/10.1016/S0168-9002(00)00485-X

  9. G. Yoshikawa, M. Kiguchi, K. Ueno, A. Saiki. Visible light photoemission and negative electron affinity of single-crystalline CsCl thin films. Surf. Sci. 544, 220 (2003).
    https://doi.org/10.1016/j.susc.2003.08.016

  10. S. Tsuchiya, M. Green, R.R.A. Syms. Structural fabrication using cesium chloride island arrays as a resist in a fluorocarbon reactive ion etching plasma. Electrochem. Solid State Lett. 3 (1), 44 (2000).
    https://doi.org/10.1149/1.1390953

  11. K. Kumar, P. Arun. Defect diffusion assisted formation of cesium metal clusters in Cesium halide thin films. J. Taibah Univ. Sci. 11 1230 (2017).
    https://doi.org/10.1016/j.jtusci.2016.12.002

  12. K. Kumar, P. Arun, C.R. Kant, N.C. Mehra, L. Makinistian. E.A. Albanesi. Effect of residual stress on the optical properties of CsCl thin films. J. Phys. Chem. Sol. 71, 163 (2010).
    https://doi.org/10.1016/j.jpcs.2009.10.013

  13. K. Kumar, P. Arun, C.R. Kant, B.K. Juluri. Metal cluster's effect on the optical properties of cesium bromide thin films. Appl. Phys. Lett. 100, 243106 (2012).
    https://doi.org/10.1063/1.4729061

  14. K. Kumar, P. Arun, C.R. Kant, V. Mathew. The effect of cesium metal clusters on the optical properties of cesium iodide thin films. Appl. Phys. A 99, 305 (2010).
    https://doi.org/10.1007/s00339-009-5532-4

  15. A.B. Scott, W.A. Smith. The thermal stability of F-centers in alkali halides. Phys. Rev. 83, 982 (1951).
    https://doi.org/10.1103/PhysRev.83.982

  16. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago. M.A. Iati. Surface plasmon resonance in gold nanoparticles: a review. J. Phys.: Cond. Matter. 29, 20 (2017).
    https://doi.org/10.1088/1361-648X/aa60f3

  17. C.F. Bohren, D.R. Huffman. Absorption and Scattering of Light by Small Particles (Wiley, 1983) [ISBN: 9783527618156].

  18. M. Hu, J. Chen, Z. Y. Li, L. Au, G.V. Hartland, X. Li, M. Arquez, Y. Xia. Chem. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Soc. Rev. 35, 1084 (2006).
    https://doi.org/10.1039/b517615h

  19. R. Gans. ? Uber die form ultramikroskopischer silberteilchen. Ann. Phys. 47, 270 (1915).
    https://doi.org/10.1002/andp.19153521006

  20. R. Gans. ? Uber die form ultramikroskopischer goldteilchen. Ann. Phys. 37, 881 (1912).
    https://doi.org/10.1002/andp.19123420503

  21. S. Link, M.A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999).
    https://doi.org/10.1021/jp984796o

  22. N.V. Smith. Optical constants of rubidium and cesium from 0.5 to 4.0 eV. Phys. Rev. B 2, 2840 (1970).
    https://doi.org/10.1103/PhysRevB.2.2840

  23. E.D. Palik. Handbook of Optical Constants of Solids (Academic Press, 1985) [ISBN: 9780125444224].
Published
2018-09-24
How to Cite
Kumar, K., & Arun, P. (2018). SPR in Cesium Halide Thin Films Due to Embedded Elliptic Cesium Metal Nano-Particles. Ukrainian Journal of Physics, 63(9), 824. https://doi.org/10.15407/ujpe63.9.824
Section
Semiconductors and dielectrics