Modeling of Entropy Production and Self-Organization of Decomposing Metallic Alloy Under high Current Density

Authors

  • A. M. Gusak Bohdan Khmelnytsky National University at Cherkasy (81, Blvd. Shevchenko, Cherkasy 18000, Ukraine)
  • S. V. Marchenko Bohdan Khmelnytsky National University at Cherkasy (81, Blvd. Shevchenko, Cherkasy 18000, Ukraine)
  • V. V. Turlo Bohdan Khmelnytsky National University at Cherkasy (81, Blvd. Shevchenko, Cherkasy 18000, Ukraine)
  • A. O. Bogatyrev Bohdan Khmelnytsky National University at Cherkasy (81, Blvd. Shevchenko, Cherkasy 18000, Ukraine)

DOI:

https://doi.org/10.15407/ujpe62.12.1031

Keywords:

electromigration, alloy, decomposition, Joule heating, entropy production, electron wind, Monte Carlo method, structure

Abstract

The synergy of the decomposition and electromigration in binary alloys under a very strong electric current is analyzed in the frame of the entropy production rate approach and simulated by the Monte Carlo method. The morphology evolution and the Joule heating rate time behavior depend on what is fixed during the electromigration – current or voltage.

References

<ol>
<li>G. Kirchhoff. Uber die anwendbarkeit der formeln fur die ¨intensitaten der galvanischen strome in einem systeme linearer leiter auf systeme, die zum theil aus nicht linearen leitern bestehen. Ann. der Physik 151, 189 (1848);
<a href="https://doi.org/10.1002/andp.18481511003">https://doi.org/10.1002/andp.18481511003</a>
</li>
H.V. Helmholtz. Uber einige gesetze der vertheilung elek- ¨ trischer strome in korperlichen leitern mit anwendung auf die thierisch-elektrischen versuche. Ann. der Physik 163, 211 (1853);
<a href="https://doi.org/10.1002/andp.18531650603">https://doi.org/10.1002/andp.18531650603</a>
</li>
E.T. Jaynes. The minimum entropy production principle. Ann. Rev. of Phys. Chem. 31 579 (1980).
<a href="https://doi.org/10.1146/annurev.pc.31.100180.003051">https://doi.org/10.1146/annurev.pc.31.100180.003051</a>
</li>
<li>P.S. Ho, H.B. Huntington. Electromigration and void observation in silver. J. of Phys. and Chem. of Solids 8, 1319 (1966).
<a href="https://doi.org/10.1016/0022-3697(66)90016-3">https://doi.org/10.1016/0022-3697(66)90016-3</a>
</li>
<li>V.B. Fiks. Ionic Conductivity in Metals and Semiconductors: Electrotransport (Nauka, 1969) (in Russian).
</li>
<li>Ya.E. Geguzin, M.A. Krivoglaz. Migration of Macroscopic Inclusions in Solids (Consultants Bureau, 1979).
</li>
<li>P. P. Kuzmenko. Electrotransport, Thermotransport, and Diffusion in Metals (Vyshcha Shkola, 1983) (in Russian).
</li>
<li>A.M. Gusak, K.N. Tu. Visn. Cherk. Univ. Ser. Fiz.-Mat. Nauk. 117, 12 (2007).
</li>
<li>P. Glansdorff, I. Prigogine. Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, 1973).
</li>
<li>M.A. Ivanov, V.I. Gluschenko. FMM 110, 435 (2010).
</li>
<li>M.A. Ivanov, V.I. Gluschenko, A.Yu. Naumuk. FMM 113, 3 (2012).
</li>
<li> A.M. Gusak, T.V. Zaporozhets, Y.O. Lyashenko et al. Diffusion-controlled solid state reactions. In: Alloys, Thin Films, and Nanosystems (Wiley, 2010), Chapt. 10.
<a href="https://doi.org/10.1002/9783527631025">https://doi.org/10.1002/9783527631025</a>
</li>
<li> Handbook of Solid State Diffusion: Vol. 2. Diffusion Analysis in Material Applications, edited by Aloke Paul and Sergiy Divinski (Elsevier, 2017).
</li>
<li> V.V. Turlo, A.M. Gusak and K.N. Tu. Model of phase separation and of morphology evolution in two-phase alloy. Philos. Magaz. 93, 2013 (2013).
<a href="https://doi.org/10.1080/14786435.2012.747011">https://doi.org/10.1080/14786435.2012.747011</a></li>
</ol>

Published

2018-09-18

How to Cite

Gusak, A. M., Marchenko, S. V., Turlo, V. V., & Bogatyrev, A. O. (2018). Modeling of Entropy Production and Self-Organization of Decomposing Metallic Alloy Under high Current Density. Ukrainian Journal of Physics, 62(12), 1031. https://doi.org/10.15407/ujpe62.12.1031

Issue

Section

Solid matter