Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization

Authors

  • A. Hashim University of Babylon, College of Education for Pure Sciences, Department of Physics
  • A. Hadi University of Babylon, College of Materials, Department of Ceramics and Building Materials

DOI:

https://doi.org/10.15407/ujpe63.8.754

Abstract

This paper aims to the preparation of novel pressure-sensitive nanocomposites with low cost, light weight, and good sensitivity. The nanocomposites of polyvinyl alcohol, polyacrylic acid, and lead oxide nanoparticles have been investigated. The dielectric properties and dc electrical conductivity of (PVA–PAA–PbO2) nanocomposites have been studied. The dielectric properties of nanocomposites were measured in the frequency range (100 Hz–5 MHz). The experimental results showed that the dielectric constant and dielectric loss of (PVA–PAA–PbO2) nanocomposites decrease, as the frequency increases, and they increase with the concentrations of PbO2 nanoparticles. The ac electrical conductivity of (PVA–PAA–PbO2) nanocomposites increases with the frequency and the concentrations of PbO2 nanoparticles. The dc electrical conductivity of (PVA–PAA–PbO2) nanocomposites also increases with the concentrations of PbO2 nanoparticles. The application of pressure-sensitive nanocomposites has been examined in the pressure interval (60–200) bar. The results showed that the electrical resistance of (PVA–PAA–PbO2) pressure-sensitive nanocomposites decreases, as the compressive stress increases. The (PVA–PAA–PbO2) nanocomposites have high sensitivity to pressure.

References

<ol>
<li>H. Mei, C. Zhang, R. Wang, J. Feng, T. Zhang. Impedance characteristics of surface pressure-sensitive carbon black/silicone rubber composites. Sensors and Actuators A 233, 118 (2015).
<a href="https://doi.org/10.1016/j.sna.2015.06.009">https://doi.org/10.1016/j.sna.2015.06.009</a>
</li>
<li>A.M. Mart??nez. Polyimides for Piezoelectric Materials, Magnetoelectric Nanocomposites and Battery Separators: Synthesis and Characterization, PhD Thesis (Universidad del Pa??s Vasco, 2016).
</li>
<li>H.N. Chandrakala, Shivakumaraiah, H. Somashekarappa, R. Somashekar, S. Chinmayee, Siddaramaiah. Poly(vinyl alcohol)/zincoxide-ceriumoxide nanocomposites: Electrical, optical, structural and morphological characteristics. Indian J. Adv. in Chem. Sci. 2, 103 (2014).
</li>
<li>M.K. Mohanapriya, Kalim Deshmukh, M. Basheer Ahamed, K. Chidambaram, S.K. Khadheer Pasha. Zeolite 4A filled poly (3,4-ethylenedioxythiophene): (polystyrene-sulfonate) (PEDOT: PSS) and polyvinyl alcohol (PVA) blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv. Mater. Lett. 7 (12), 996 (2016).
<a href="https://doi.org/10.5185/amlett.2016.6555">https://doi.org/10.5185/amlett.2016.6555</a>
</li>
<li>A. Hashim, A. Hadi. Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62 (11), (2017).
</li>
<li>I.R. Agool, K.J. Kadhim, A. Hashim. Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plastics Technol. 21 (2), (2017).
</li>
<li>A. Hashim, Q. Hadi. Structural, electrical and optical properties of (biopolymer blend/ titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci.: Materials in Electronics 29, 11598 (2018).
<a href="https://doi.org/10.1007/s10854-018-9257-z">https://doi.org/10.1007/s10854-018-9257-z</a>
</li>
<li>A. Hashim, Q. Hadi. Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorganic and Organo-metallic Polymers and Materials 28 (4), 1394 (2018).
<a href="https://doi.org/10.1007/s10904-018-0837-4">https://doi.org/10.1007/s10904-018-0837-4</a>
</li>
<li>Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi. The D.C electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400 (1), 180 (2011).
</li>
<li> K.J. Kadhim, I.R. Agool, A. Hashim. Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J. Adv. Phys. 6 (2), 187 (2017).
<a href="https://doi.org/10.1166/jap.2017.1313">https://doi.org/10.1166/jap.2017.1313</a>
</li>
<li> K.J. Kadhim, I.R. Agool, A. Hashim. Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application, materials focus. 5 (5), 436 (2016).
</li>
<li> F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim. Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharmaceutical and Phytopharm. Res. 8 (1), (2018).
</li>
<li> I.R. Agool, K.J. Kadhim, A. Hashim. Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: Electrical properties for energy storage and release. Int. J. Plastics Technol. 20 (1), 121 (2016).
<a href="https://doi.org/10.1007/s12588-016-9144-5">https://doi.org/10.1007/s12588-016-9144-5</a>
</li>
<li> I.R. Agool, K.J. Kadhim, A. Hashim. Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plastics Technol. 21 (2), (2017).
</li>
<li> M. Obula Reddy, B. Chandra Babu. Structural, optical, electrical, and magnetic properties of PVA:Gd3+ and PVA:Ho3+ polymer films. Indian J. Mater. Sci. 2015, Article ID 927364 (2015).
</li>
<li> C.M. Mathew, K. Kesavan, S. Rajendran. Structural and electrochemical analysis of PMMA based Gel electrolyte membranes. Int. J. Electrochem. 2015, Article ID 494308 (2015).
<a href="https://doi.org/10.1155/2015/494308">https://doi.org/10.1155/2015/494308</a>
</li>
<li> A.F. Mansour, S.F. Mansour, M.A. Abdo. Enhancement of structural and electrical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7 (2), 97 (2015).
</li>
<li> R. Divya, M. Meena, C.K. Mahadevan, C.M. Padma. Investigation on CuO dispersed PVA polymer films. J. Engin. Res. and Applic. 4 (5), 1 (2014).
</li>
<li> A. Hashim, I.R. Agool, K.J. Kadhim. Novel of (polymer blend-Fe3O4) magnetic nanocomposites: Preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci.: Materials in Electronics 29 (12), 10369 (2018).
<a href="https://doi.org/10.1007/s10854-018-9095-z">https://doi.org/10.1007/s10854-018-9095-z</a>
</li>
<li> A. Hashim, A. Hadi. A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sensor Lett. 15 (12), (2017).
<a href="https://doi.org/10.1166/sl.2017.3910">https://doi.org/10.1166/sl.2017.3910</a>
</li>
<li> C. Srikanth, C. Sridhar, B.M. Nagabhushana, R.D. Mathad. Characterization and DC conductivity of novel CuO doped polyvinyl alcohol (PVA) nano-composite films. J. Engin. Res. and Applic. 4 (10), 38 (2014).
</li>
<li> A. Hadi, A. Hashim. Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62 (12), (2017).
</li>
<li> A. Hashim, A. Hadi. Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: Biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. 62 (12), (2017).
</li>
<li> A. Al-Saygh, D. Ponnamma, M.A. AlMaadeed, P. Vijayan, A. Karim, M.K. Hassan. Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polym. 9, 33 (2017).
<a href="https://doi.org/10.3390/polym9020033">https://doi.org/10.3390/polym9020033</a>
</li>
<li> M. Kalantari, J. Dargahi, J. K?ovecses, M. Ghanbari Mardasi, S. Nouri. A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics 17 (3), (2012).
<a href="https://doi.org/10.1109/TMECH.2011.2108664">https://doi.org/10.1109/TMECH.2011.2108664</a>
</li>
<li> Alamusi, Ning Hu, Hisao Fukunaga, Satoshi Atobe, Yaolu Liu, Jinhua Li. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11 (11), 10691 (2011).
<a href="https://doi.org/10.3390/s111110691">https://doi.org/10.3390/s111110691</a>
</li>
<li> C.-C. Su, C.-H. Li, N.-K. Chang, F. Gao, S.-H. Chang. Fabrication of high sensitivity carbon microcoil pressure sensors. Sensors 12, 10034 (2012).
<a href="https://doi.org/10.3390/s120810034">https://doi.org/10.3390/s120810034</a>
</li>
<li> J.-C. Wang, R.S. Karmakar, Y.-J. Lu, C.-Y. Huang, K.-C. Wei. Characterization of piezoresistive PEDOT:PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors 15, 818 (2015).
<a href="https://doi.org/10.3390/s150100818">https://doi.org/10.3390/s150100818</a></li>

Downloads

Published

2018-09-07

How to Cite

Hashim, A., & Hadi, A. (2018). Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukrainian Journal of Physics, 63(8), 754. https://doi.org/10.15407/ujpe63.8.754

Issue

Section

Surface physics