Collective Diffusion of Colloidal Particles in a Liquid Crystal

  • B. I. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Zagorodny Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
Keywords: diffusion, liquid crystalls, colloidal particles, collective interactions

Abstract

The theory of collective diffusion effects in a system of colloidal particles in a liquid crystal is proposed. The specifics of diffusion which can be observed experimentally are described. The dependence of the diffusion coefficient on the temperature and particle density is found. It is shown that collective diffusion in a system of colloidal particles in a liquid crystal arises from the elastic distortion of the director field generating the interparticle interaction. The behavior of such diffusion is found to be nontrivial.

References

P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz. Novel colloidal interactions in anisotropic fluids. Science 275, 1770 (1997). https://doi.org/10.1126/science.275.5307.1770

P. Poulin, V. Cabuil, D.A. Weitz. Direct measurement of colloidal forces in an anisotropic solvent. Phys. Rev. Lett. 79, 4862 (1997). https://doi.org/10.1103/PhysRevLett.79.4862

P. Poulin, V.A. Raghunathan, P. Richetti, D. Roux. On the dispersion of latex particles in a nematic solution. I. Experimental evidence and a simple model. J. Phys. I France 4, 1557 (1994).

P. Poulin, D.A.Weitz. Inverted and multiple nematic emulsions. Phys. Rev. E 57, 626 (1998). https://doi.org/10.1103/PhysRevE.57.626

I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, S. Zumer. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954 (2006). https://doi.org/10.1126/science.1129660

V. Nazarenko, A. Nych, B. Lev. Crystal structure in nematic emulsion. Phys. Rev. Lett 87, 075504 (2001). https://doi.org/10.1103/PhysRevLett.87.075504

A. Nych, U. Ognysta, M. Skarabot, M. Ravnik, S. Zumer, I. Musevic. Assembly and control of 3D nematic dipolar colloidal crystals. Nature Communications 4, 1489 (2013). https://doi.org/10.1038/ncomms2486

T. Turiv, I. Lazo, A. Brodin, B.I. Lev, V. Reiffenrath, V.G. Nazarenko, O.D. Lavrentovich. Effect of collective molecular reorientations on Brownian motion of colloids in nematic liquid crystal. Science 342, 1351 (2013). https://doi.org/10.1126/science.1240591

B.I. Lev, P.M. Tomchuk. Interaction of foreign macrodroplets in a nematic liquid crystal and induced supermolecular structures. Phys. Rev. E 59, 591 (1999). https://doi.org/10.1103/PhysRevE.59.591

K. Aoki, B.I. Lev, H. Yokoyama. Cluster formation of colloids in nematics. Mol. Cryst. Liq. Cryst. 367, 537 (2001). https://doi.org/10.1080/10587250108028674

B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama. Symmetry breaking and interaction of colloidal particles in nematic liquid crystals. Phys. Rev. E 65, 021709 (2002). https://doi.org/10.1103/PhysRevE.65.021709

T. Ohtsuki, K. Okano. Diffusion coefficients of interacting Brownian particles. J. Chem. Phys. 77, 1443 (1982). https://doi.org/10.1063/1.443971

P. Prinsen, T. Odijka. Collective diffusion coefficient of proteins with hydrodynamic, electrostatic, and adhesive interactions. J. Chem. Rev. 127, 115102 (2007). https://doi.org/10.1063/1.2771160

J.K. Dhont, G. Nagele. Critical viscoelastic behavior of colloids. Phys. Rev. E 58, 7710 (1998). https://doi.org/10.1103/PhysRevE.58.7710

R. Verberg, I.M. de Schepper, E.G.D. Cohen. Viscosity of colloidal suspensions. Phys. Rev. E 55, 3143 (1997). https://doi.org/10.1103/PhysRevE.55.3143

R.W. Ruhwandl, E.M. Terentjev. Monte Carlo simulation of topological defects in the nematic liquid crystal matrix around a spherical colloid particle. Phys. Rev. E 56, 5561 (1997). https://doi.org/10.1103/PhysRevE.56.5561

R.W. Ruhwandl, E.M. Terentjev. Friction drag on a particle moving in a nematic liquid crystal. Phys. Rev. E 54, 5204 (1996). https://doi.org/10.1103/PhysRevE.54.5204

E.D. Belockii, B.I. Lev, P.M. Tomchuk. Effective ion mass in a liquid crystal. JETP Lett. 31, 539 (1980).

H. Stark, D. Ventzki. Stokes drag of spherical particles in a nematic environment at low Ericksen numbers. Phys. Rev. E 64, 031711 (2001). https://doi.org/10.1103/PhysRevE.64.031711

H. Stark, D. Ventzki. Non-linear Stokes drag of spherical particles in a nematic solvent. Europhys. Lett. 57, 60 (2003). https://doi.org/10.1209/epl/i2002-00541-0

T.C. Lubensky, D. Pettey, N. Currier, H. Stark. Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610 (1998). https://doi.org/10.1103/PhysRevE.57.610

S.B. Chernyshuk. High-order elastic terms, boojums and general paradigm of the elastic interaction between colloidal particles in the nematic liquid crystals. Eur. Phys. J. E 37, 6 (2014). https://doi.org/10.1140/epje/i2014-14006-5

O.V. Kuksenok, R.W. Ruhwandl, S.V. Shiyanovskii, E.M. Terentjev. Director structure around a colloid particle suspended in a nematic liquid crystal. Phys. Rev. E 54, 5198 (1996). https://doi.org/10.1103/PhysRevE.54.5198

E.M. Terentjev. Disclination loops, standing alone and around solid particles, in nematic liquid crystals. Phys. Rev. E 51, 1330 (1995). https://doi.org/10.1103/PhysRevE.51.1330

H. Lowen. Solvent-induced phase separation in colloidal fluids. Phys. Rev. Lett. 74, 1028 (1995). https://doi.org/10.1103/PhysRevLett.74.1028

Published
2019-01-30
How to Cite
Lev, B., & Zagorodny, A. (2019). Collective Diffusion of Colloidal Particles in a Liquid Crystal. Ukrainian Journal of Physics, 64(1), 48. https://doi.org/10.15407/ujpe64.1.48
Section
Liquid crystals and polymers