Energy Characteristics of Metal Nanowires with Periodically Modulated Surface

Authors

  • A. V. Korotun National University “Zaporizhzhia Politechnic”
  • Ya. V. Karandas National University “Zaporizhzhia Politechnic”

DOI:

https://doi.org/10.15407/ujpe64.9.848

Keywords:

nanowire, Fermi energy, modulation amplitude, perturbation theory

Abstract

The energy spectrum of electrons in a metal nanowire with a periodically modulated surface has been found in the framework of perturbation theory. To solve the problem, a transition is made into a coordinate system that “smoothes down” the surface oscillations. The influence of the surface modulation amplitude on size-induced oscillations of the Fermi energy in such systems is analyzed. It is shown that an increase of the modulation amplitude leads to a decrease of the Fermi energy in the wire. Specific calculations were made for Au, Cu, and Al wires.

References

P.M. Tomchuk. Oscillations of optical conductivity and emission in quantum metal conductors. Ukr. Fiz. Zh. 47, 833 (2002) (in Ukrainian).

Al. Moroz. Electron mean-free path in metal-coated nanowires. J. Opt. Soc. Am. B 28, 1130 (2011). https://doi.org/10.1364/JOSAB.28.001130

H.L. Chen, L. Gao. Anomalous electromagnetic scattering from radially anisotropic nanowires. Phys. Rev. A 86, 033825 (2012). https://doi.org/10.1103/PhysRevA.86.033825

St. H. Simpson, P. Zemanek, O.M. Marago, Ph.H. Jones, S. Hanna. Optical binding of nanowires. Nano Lett. 17, 3485 (2017). https://doi.org/10.1021/acs.nanolett.7b00494

L. Zhang, Yi Zhou, X. Dai, Zh. Zhao, H. Li. Electronic transport properties of lead nanowires. Chin. Phys. B 26, 073102 (2017). https://doi.org/10.1088/1674-1056/26/7/073102

Kr. Moors, B. Soree, W. Magnus. Modeling surface roughness scattering in metallic nanowires. J. Appl. Phys 118, 124307 (2015). https://doi.org/10.1063/1.4931573

M. Michailov, D. Kashchiev. Monatomic metal nanowires: Rupture kinetics and mean lifetime. Phys. E 70, 21 (2015). https://doi.org/10.1016/j.physe.2015.02.018

P. Cui, J-H. Choi, H. Lan, J-H. Cho, Q. Niu, J. Yang, Zh. Zhang. Quantum stability and magic lengths of metal atom wires. Phys. Rev. B 93, 224102 (2016). https://doi.org/10.1103/PhysRevB.93.224102

Zh. He, Zh. Zhou. Theoretically analyzed optical property of silver nanowire on a SiO2 layer. IEEE Photon. J. 10, 2856856 (2018). https://doi.org/10.1109/JPHOT.2018.2856856

A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, M. Lamy de la Chapelle. Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Status Solidi B 247, 2071 (2010). https://doi.org/10.1002/pssb.200983933

D.A. Zuev, S.V. Makarov, I.S. Mukhin, S.V. Starikov, I.A. Morozov, I.I. Shishkin, A.E. Krasnok, P.A. Belov. Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation [eprint arXiv:1601.02013].

M. Fan, G.F. Andrade, A.G. Brolo. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7 (2011). https://doi.org/10.1016/j.aca.2011.03.002

J. Dorfm¨uller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern. Plasmonic nanowire antennas: experiment, simulation, and theory. Nano Lett. 10, 3596 (2010). https://doi.org/10.1021/nl101921y

T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. van Hulst. Optical antennas direct single-molecule emission. Nat. Photon. 2, 234 (2008). https://doi.org/10.1038/nphoton.2008.32

E.A. Velichko, A.P. Nikolaenko. Nanocylinders from noble metal as diffusers of plane electromagnetic wave. Radiofiz. Elektron. 20, 62 (2015) (in Russian). https://doi.org/10.15407/rej2015.04.062

Y. Namba, J. Yu, J.M. Bennett, K. Yamashita. Modeling and measurements of atomic surface roughness. Appl. Opt. 39, 2705 (2000). https://doi.org/10.1364/AO.39.002705

V.P. Kurbatskyi, A.V. Korotun, V.V. Pogosov. Optical conductivity and absorption of thin metal films in the infra-red spectral range. Ukr. Fiz. Zh. 53, 569 (2008) (in Ukrainian).

V.P. Kurbatskii, A.V. Korotun, A.V. Babich, V.V. Pogosov. Fermi energy and optical conductivity of quantum metal filaments. Fiz. Tverd. Tela 51, 2371 (2009) (in Russian). https://doi.org/10.1134/S1063783409120154

A.V. Korotun, V.P. Kurbatskii, V.V. Pogosov. Dielectric function of 1D metal systems. Zh. Nano Elektron. Fiz. 8, 04070 (2016) (in Russian). https://doi.org/10.21272/jnep.8(4(2)).04070

J. Motohisa, H. Sakaki. Interface roughness scattering and electron mobility in quantum wires. Appl. Phys. Lett. 60, 1315 (1992). https://doi.org/10.1063/1.107328

H. Fu, M. Sammon, B.I. Shklovskii. Roughness scattering induced insulator-metal-insulator transition in a quantum wire. Phys. Rev. B 97, 035304 (2018). https://doi.org/10.1103/PhysRevB.97.035304

V.I. Konchenkov, S.V. Kryuchkov. Electronic states in a quantum wire with the circular cross section and a periodically modulated surface. Izv. Volg. Gos. Tekh. Univ. 2, 31 (2008) (in Russian).

G.A. Korn, T.M. Korn. Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1968).

A.V. Korotun, A.A. Koval. On the influence of insulator on the Fermi energy oscillations in an elliptic metal nanowire. Fiz. Tverd. Tela 57, 1813 (2015) (in Russian). https://doi.org/10.1134/S106378341509019X

E.H. Rhoderick. Metal-Semiconductor Contacts (Clarendon Press, 1978).

A.V. Korotun, Ya.V. Karandas. Energy characteristics of a metal nanofilm in a dielectric environment. Zh. Nano Elektron. Fiz. 7, 02018 (2015) (in Ukrainian).

Published

2019-10-11

How to Cite

Korotun, A. V., & Karandas, Y. V. (2019). Energy Characteristics of Metal Nanowires with Periodically Modulated Surface. Ukrainian Journal of Physics, 64(9), 848. https://doi.org/10.15407/ujpe64.9.848

Issue

Section

Surface physics