Magnetogenesis in Natural Inflation Model

  • M. Kamarpour Physics Faculty, Taras Shevchenko National University of Kyiv
  • O. Sobol Physics Faculty, Taras Shevchenko National University of Kyiv, Institute of Physics, ´ Ecole Polytechnique F´ed´erale de Lausanne
Keywords: natural inflation, magnetogenesis, kinetic coupling, large-scale magnetic fields

Abstract

We study the process of inflationary magnetogenesis in the natural single-field inflation model, whose parameters are chosen in accordance with the recent observations by the Planck collaboration [1]. The conformal invariance of the Maxwell action is broken by a kinetic coupling with the inflaton field by means of the coupling function as a power of the scale factor, I(ф) ∝ aa, and a < 0 is used in order to avoid the strong coupling problem. For such a, the electric component of the energy density dominates over the magnetic one and, for a <- −2.2, it causes a strong back-reaction, which can spoil inflation and terminate the enhancement of the magnetic field. It is found that the magnetic fields generated without back-reaction problem cannot exceed ∼10−20G at the present epoch, and their spectrum has a blue tilt.

References


  1. P.A.R. Ade et al. (Planck Collaboration). Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016).
    https://doi.org/10.1051/0004-6361/201525898">https://doi.org/10.1051/0004-6361/201525898">https://doi.org/10.1051/0004-6361/201525898

  2. P.P. Kronberg. Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994).
    https://doi.org/10.1088/0034-4885/57/4/001

  3. D. Grasso, H.R. Rubinstein. Magnetic fields in the early universe. Phys. Rep. 348, 163 (2001).
    https://doi.org/10.1016/S0370-1573(00)00110-1

  4. L.M. Widrow. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002).
    https://doi.org/10.1103/RevModPhys.74.775

  5. M. Giovannini. The magnetized universe. Int. J. Mod. Phys. D 13, 391 (2004).
    https://doi.org/10.1142/S0218271804004530

  6. A. Kandus, K.E. Kunze, C. G. Tsagas. Primordial magnetogenesis. Phys. Rep. 505, 1 (2011).
    https://doi.org/10.1016/j.physrep.2011.03.001

  7. R. Durrer, A. Neronov. Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013).
    https://doi.org/10.1007/s00159-013-0062-7

  8. K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016).
    https://doi.org/10.1088/0034-4885/79/7/076901

  9. D.R. Sutton, C. Feng, C.L. Reichardt. Current and future constraints on primordial magnetic fields. Astrophys. J. 846, 164 (2017).
    https://doi.org/10.3847/1538-4357/aa85e2

  10. K. Jedamzik, A. Saveliev. A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation. arXiv:1804.06115 [astro-ph.CO].

  11. A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010).
    https://doi.org/10.1126/science.1184192

  12. F. Tavecchio, G. Ghisellini, L. Foschini et al. The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010).

  13. A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011).
    https://doi.org/10.1051/0004-6361/201116441

  14. C. Caprini, S. Gabici. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015).
    https://doi.org/10.1103/PhysRevD.91.123514

  15. L. Biermann. ? Uber den ursprung der magnetfelder auf sternen und im interstellaren raum. (About the origin of the magnetic fields on stars and in the interstellar space). Z. Naturforsch. A 5, 65 (1950).

  16. Ya.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff. Magnetic Fields in Astrophysics (Gordon and Breach, 1990) [ISBN: 978-0677223308].

  17. H. Lesch, M. Chiba. Protogalactic evolution and magnetic fields. Astron. Astrophys. 297, 305 (1995).

  18. R. Kulsrud, S.C. Cowley, A.V. Gruzinov et al. Dynamos and cosmic magnetic fields. Phys. Rep. 283, 213 (1997).
    https://doi.org/10.1016/S0370-1573(96)00061-0

  19. S.A. Colgate, H. Li. The origin of the magnetic fields of the universe: The plasma astrophysics of the free energy of the universe. Phys. Plasmas 8, 2425 (2001).
    https://doi.org/10.1063/1.1351827

  20. M.J. Rees. The origin and cosmogonic implications of seed magnetic fields. Quarterly J. R. Astr. Soc. 28, 197 (1987).

  21. R.A. Daly, A. Loeb. A possible origin of galactic magnetic fields. Astrophys. J. 364, 451 (1990).
    https://doi.org/10.1086/169429

  22. T.A. En?lin, P.L. Biermann, P.P. Kronberg et al. Cosmicray protons and magnetic fields in clusters of galaxies and their cosmological consequences. Astrophys. J. 477, 560 (1997).
    https://doi.org/10.1086/303722

  23. S. Bertone, C. Vogt, T. En?lin. Magnetic field seeding by galactic winds. Mon. Not. R. Astron. Soc. 370, 319 (2006).
    https://doi.org/10.1111/j.1365-2966.2006.10474.x

  24. M.S. Turner, L.M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988).
    https://doi.org/10.1103/PhysRevD.37.2743

  25. B. Ratra. Cosmological "seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992).
    https://doi.org/10.1086/186384

  26. C.J. Hogan. Magnetohydrodynamic effects of a first-order cosmological phase transition. Phys. Rev. Lett. 51, 1488 (1983).
    https://doi.org/10.1103/PhysRevLett.51.1488

  27. J.M. Quashnock, A. Loeb, D.N. Spergel. Magnetic field generation during the cosmological QCD phase transition. Astrophys. J. 344, L49 (1989).
    https://doi.org/10.1086/185528

  28. T. Vachaspati. Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258 (1991).
    https://doi.org/10.1016/0370-2693(91)90051-Q

  29. B.-L. Cheng, A.V. Olinto. Primordial magnetic fields generated in the quark – hadron transition. Phys. Rev. D 50, 2421 (1994).
    https://doi.org/10.1103/PhysRevD.50.2421

  30. G. Sigl, A.V. Olinto, K. Jedamzik. Primordial magnetic fields from cosmological first order phase transitions. Phys. Rev. D 55, 4582 (1997).
    https://doi.org/10.1103/PhysRevD.55.4582

  31. J. Ahonen, K. Enqvist. Magnetic field generation in first order phase transition bubble collisions. Phys. Rev. D 57, 664 (1998).
    https://doi.org/10.1103/PhysRevD.57.664

  32. V.F. Mukhanov, G.V. Chibisov. Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532 (1981).

  33. S.W. Hawking. The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982).
    https://doi.org/10.1016/0370-2693(82)90373-2

  34. A.A. Starobinsky. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982).
    https://doi.org/10.1016/0370-2693(82)90541-X

  35. A.H. Guth, S.Y. Pi. Fluctuations in the new inflationary Universe. Phys. Rev. Lett. 49, 1110 (1982).
    https://doi.org/10.1103/PhysRevLett.49.1110

  36. J.M. Bardeen, P.J. Steinhardt, M.S. Turner. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983).
    https://doi.org/10.1103/PhysRevD.28.679

  37. L.P. Grishchuk. Amplification of gravitational waves in an isotropic universe. Sov. Phys. JETP 40, 409 (1975).

  38. A.A. Starobinsky. Spectrum of relict gravitational radiation and the early state of the Universe. JETP Lett. 30, 682 (1979).

  39. V.A. Rubakov, M.V. Sazhin, A.V. Veryaskin. Graviton creation in the inflationary Universe and the grand unification scale. Phys. Lett. B 115, 189 (1982).
    https://doi.org/10.1016/0370-2693(82)90641-4

  40. L. Parker. Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968).
    https://doi.org/10.1103/PhysRevLett.21.562

  41. A.D. Dolgov. Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993).
    https://doi.org/10.1103/PhysRevD.48.2499

  42. M. Gasperini, M. Giovannini, G. Veneziano. Primordial magnetic fields from string cosmology. Phys. Rev. Lett. 75, 3796 (1995).
    https://doi.org/10.1103/PhysRevLett.75.3796

  43. M. Giovannini. Magnetogenesis and the dynamics of internal dimensions. Phys. Rev. D 62, 123505 (2000).
    https://doi.org/10.1103/PhysRevD.62.123505

  44. K. Atmjeet, I. Pahwa, T.R. Seshadri et al. Cosmological magnetogenesis from extra-dimensional Gauss–Bonnet gravity. Phys. Rev. D 89, 063002 (2014).
    https://doi.org/10.1103/PhysRevD.89.063002

  45. M. Giovannini. On the variation of the gauge couplings during inflation. Phys. Rev. D 64, 061301 (2001).
    https://doi.org/10.1103/PhysRevD.64.061301

  46. K. Bamba, J. Yokoyama. Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004).
    https://doi.org/10.1103/PhysRevD.69.043507

  47. J. Martin, J. Yokoyama. Generation of large-scale magnetic fields in single-field inflation. J. Cosmol. Astropart. Phys. 01, 025 (2008).

  48. V. Demozzi, V.M. Mukhanov, H. Rubinstein. Magnetic fields from inflation. J. Cosmol. Astropart. Phys. 08, 025 (2009).

  49. S. Kanno, J. Soda, M. Watanabe. Cosmological magnetic fields from inflation and backreaction. J. Cosmol. Astropart. Phys. 12, 009 (2009).

  50. R.J.Z. Ferreira, R.K. Jain, M.S. Sloth. Inflationary magnetogenesis without the strong coupling problem. J. Cosmol. Astropart. Phys. 10, 004 (2013).

  51. R.J.Z. Ferreira, R.K. Jain, M.S. Sloth. Inflationary magnetogenesis without the strong coupling problem II: Constraints from CMB anisotropies and B-modes. J. Cosmol. Astropart. Phys. 06, 053 (2014).

  52. S. Vilchinskii, O. Sobol, E.V. Gorbar et al. Magnetogenesis during inflation and preheating in the Starobinsky model. Phys. Rev. D 95, 083509 (2017).
    https://doi.org/10.1103/PhysRevD.95.083509

  53. J. Martin, C. Ringeval, V. Vennina. Encyclop?dia inflationaris. Phys. Dark Universe 5–6, 75 (2014).
    https://doi.org/10.1016/j.dark.2014.01.003

  54. K. Freese, J.A. Frieman, A.V. Olinto. Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 65, 3233 (1990).
    https://doi.org/10.1103/PhysRevLett.65.3233

  55. F.C. Adams, J.R. Bond, K. Freese et al. Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. Phys. Rev. D 47, 426 (1993).
    https://doi.org/10.1103/PhysRevD.47.426

  56. J.E. Kim, H.P. Nilles, M. Peloso. Completing natural inflation. J. Cosmol. Astropart. Phys. 01, 005 (2005).

  57. A.R. Liddle, P. Parsons, J.D. Barrow. Formalizing the slow roll approximation in inflation. Phys. Rev. D 50, 7222 (1994).
    https://doi.org/10.1103/PhysRevD.50.7222

  58. D.S. Gorbunov, V.A. Rubakov. Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, 2011) [ISBN 978-981-4322-22-5].
Published
2018-09-07
How to Cite
Kamarpour, M., & Sobol, O. (2018). Magnetogenesis in Natural Inflation Model. Ukrainian Journal of Physics, 63(8), 673. https://doi.org/10.15407/ujpe63.8.673
Section
Fields and elementary particles