Magnetogenesis in Natural Inflation Model

  • M. Kamarpour Physics Faculty, Taras Shevchenko National University of Kyiv
  • O. Sobol Physics Faculty, Taras Shevchenko National University of Kyiv, Institute of Physics, ´ Ecole Polytechnique F´ed´erale de Lausanne
Keywords: natural inflation, magnetogenesis, kinetic coupling, large-scale magnetic fields


We study the process of inflationary magnetogenesis in the natural single-field inflation model, whose parameters are chosen in accordance with the recent observations by the Planck collaboration [1]. The conformal invariance of the Maxwell action is broken by a kinetic coupling with the inflaton field by means of the coupling function as a power of the scale factor, I(ф) ∝ aa, and a < 0 is used in order to avoid the strong coupling problem. For such a, the electric component of the energy density dominates over the magnetic one and, for a <- −2.2, it causes a strong back-reaction, which can spoil inflation and terminate the enhancement of the magnetic field. It is found that the magnetic fields generated without back-reaction problem cannot exceed ∼10−20G at the present epoch, and their spectrum has a blue tilt.


  1. P.A.R. Ade et al. (Planck Collaboration). Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016).">">

  2. P.P. Kronberg. Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325 (1994).

  3. D. Grasso, H.R. Rubinstein. Magnetic fields in the early universe. Phys. Rep. 348, 163 (2001).

  4. L.M. Widrow. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775 (2002).

  5. M. Giovannini. The magnetized universe. Int. J. Mod. Phys. D 13, 391 (2004).

  6. A. Kandus, K.E. Kunze, C. G. Tsagas. Primordial magnetogenesis. Phys. Rep. 505, 1 (2011).

  7. R. Durrer, A. Neronov. Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013).

  8. K. Subramanian. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 79, 076901 (2016).

  9. D.R. Sutton, C. Feng, C.L. Reichardt. Current and future constraints on primordial magnetic fields. Astrophys. J. 846, 164 (2017).

  10. K. Jedamzik, A. Saveliev. A stringent limit on primordial magnetic fields from the cosmic microwave backround radiation. arXiv:1804.06115 [astro-ph.CO].

  11. A. Neronov, I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 328, 73 (2010).

  12. F. Tavecchio, G. Ghisellini, L. Foschini et al. The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200. Mon. Not. R. Astron. Soc. 406, L70 (2010).

  13. A.M. Taylor, I. Vovk, A. Neronov. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 529, A144 (2011).

  14. C. Caprini, S. Gabici. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum. Phys. Rev. D 91, 123514 (2015).

  15. L. Biermann. ? Uber den ursprung der magnetfelder auf sternen und im interstellaren raum. (About the origin of the magnetic fields on stars and in the interstellar space). Z. Naturforsch. A 5, 65 (1950).

  16. Ya.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff. Magnetic Fields in Astrophysics (Gordon and Breach, 1990) [ISBN: 978-0677223308].

  17. H. Lesch, M. Chiba. Protogalactic evolution and magnetic fields. Astron. Astrophys. 297, 305 (1995).

  18. R. Kulsrud, S.C. Cowley, A.V. Gruzinov et al. Dynamos and cosmic magnetic fields. Phys. Rep. 283, 213 (1997).

  19. S.A. Colgate, H. Li. The origin of the magnetic fields of the universe: The plasma astrophysics of the free energy of the universe. Phys. Plasmas 8, 2425 (2001).

  20. M.J. Rees. The origin and cosmogonic implications of seed magnetic fields. Quarterly J. R. Astr. Soc. 28, 197 (1987).

  21. R.A. Daly, A. Loeb. A possible origin of galactic magnetic fields. Astrophys. J. 364, 451 (1990).

  22. T.A. En?lin, P.L. Biermann, P.P. Kronberg et al. Cosmicray protons and magnetic fields in clusters of galaxies and their cosmological consequences. Astrophys. J. 477, 560 (1997).

  23. S. Bertone, C. Vogt, T. En?lin. Magnetic field seeding by galactic winds. Mon. Not. R. Astron. Soc. 370, 319 (2006).

  24. M.S. Turner, L.M. Widrow. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743 (1988).

  25. B. Ratra. Cosmological "seed" magnetic field from inflation. Astrophys. J. 391, L1 (1992).

  26. C.J. Hogan. Magnetohydrodynamic effects of a first-order cosmological phase transition. Phys. Rev. Lett. 51, 1488 (1983).

  27. J.M. Quashnock, A. Loeb, D.N. Spergel. Magnetic field generation during the cosmological QCD phase transition. Astrophys. J. 344, L49 (1989).

  28. T. Vachaspati. Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258 (1991).

  29. B.-L. Cheng, A.V. Olinto. Primordial magnetic fields generated in the quark – hadron transition. Phys. Rev. D 50, 2421 (1994).

  30. G. Sigl, A.V. Olinto, K. Jedamzik. Primordial magnetic fields from cosmological first order phase transitions. Phys. Rev. D 55, 4582 (1997).

  31. J. Ahonen, K. Enqvist. Magnetic field generation in first order phase transition bubble collisions. Phys. Rev. D 57, 664 (1998).

  32. V.F. Mukhanov, G.V. Chibisov. Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532 (1981).

  33. S.W. Hawking. The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982).

  34. A.A. Starobinsky. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982).

  35. A.H. Guth, S.Y. Pi. Fluctuations in the new inflationary Universe. Phys. Rev. Lett. 49, 1110 (1982).

  36. J.M. Bardeen, P.J. Steinhardt, M.S. Turner. Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983).

  37. L.P. Grishchuk. Amplification of gravitational waves in an isotropic universe. Sov. Phys. JETP 40, 409 (1975).

  38. A.A. Starobinsky. Spectrum of relict gravitational radiation and the early state of the Universe. JETP Lett. 30, 682 (1979).

  39. V.A. Rubakov, M.V. Sazhin, A.V. Veryaskin. Graviton creation in the inflationary Universe and the grand unification scale. Phys. Lett. B 115, 189 (1982).

  40. L. Parker. Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968).

  41. A.D. Dolgov. Breaking of conformal invariance and electromagnetic field generation in the universe. Phys. Rev. D 48, 2499 (1993).

  42. M. Gasperini, M. Giovannini, G. Veneziano. Primordial magnetic fields from string cosmology. Phys. Rev. Lett. 75, 3796 (1995).

  43. M. Giovannini. Magnetogenesis and the dynamics of internal dimensions. Phys. Rev. D 62, 123505 (2000).

  44. K. Atmjeet, I. Pahwa, T.R. Seshadri et al. Cosmological magnetogenesis from extra-dimensional Gauss–Bonnet gravity. Phys. Rev. D 89, 063002 (2014).

  45. M. Giovannini. On the variation of the gauge couplings during inflation. Phys. Rev. D 64, 061301 (2001).

  46. K. Bamba, J. Yokoyama. Large scale magnetic fields from inflation in dilaton electromagnetism. Phys. Rev. D 69, 043507 (2004).

  47. J. Martin, J. Yokoyama. Generation of large-scale magnetic fields in single-field inflation. J. Cosmol. Astropart. Phys. 01, 025 (2008).

  48. V. Demozzi, V.M. Mukhanov, H. Rubinstein. Magnetic fields from inflation. J. Cosmol. Astropart. Phys. 08, 025 (2009).

  49. S. Kanno, J. Soda, M. Watanabe. Cosmological magnetic fields from inflation and backreaction. J. Cosmol. Astropart. Phys. 12, 009 (2009).

  50. R.J.Z. Ferreira, R.K. Jain, M.S. Sloth. Inflationary magnetogenesis without the strong coupling problem. J. Cosmol. Astropart. Phys. 10, 004 (2013).

  51. R.J.Z. Ferreira, R.K. Jain, M.S. Sloth. Inflationary magnetogenesis without the strong coupling problem II: Constraints from CMB anisotropies and B-modes. J. Cosmol. Astropart. Phys. 06, 053 (2014).

  52. S. Vilchinskii, O. Sobol, E.V. Gorbar et al. Magnetogenesis during inflation and preheating in the Starobinsky model. Phys. Rev. D 95, 083509 (2017).

  53. J. Martin, C. Ringeval, V. Vennina. Encyclop?dia inflationaris. Phys. Dark Universe 5–6, 75 (2014).

  54. K. Freese, J.A. Frieman, A.V. Olinto. Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 65, 3233 (1990).

  55. F.C. Adams, J.R. Bond, K. Freese et al. Natural inflation: Particle physics models, power-law spectra for large-scale structure, and constraints from the Cosmic Background Explorer. Phys. Rev. D 47, 426 (1993).

  56. J.E. Kim, H.P. Nilles, M. Peloso. Completing natural inflation. J. Cosmol. Astropart. Phys. 01, 005 (2005).

  57. A.R. Liddle, P. Parsons, J.D. Barrow. Formalizing the slow roll approximation in inflation. Phys. Rev. D 50, 7222 (1994).

  58. D.S. Gorbunov, V.A. Rubakov. Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (World Scientific, 2011) [ISBN 978-981-4322-22-5].
How to Cite
Kamarpour, M., & Sobol, O. (2018). Magnetogenesis in Natural Inflation Model. Ukrainian Journal of Physics, 63(8), 673.
Fields and elementary particles