Influence of Divacancy-Oxygen Defects on Recombination Properties of n-Si Subjected to Irradiation and Subsequent Annealing
DOI:
https://doi.org/10.15407/ujpe63.12.1095Keywords:
gamma irradiation, divacancy-oxygen defect, charge carrier lifetime, siliconAbstract
The variation of recombination properties in n-Si grown by the Czochralski method, doped to the free electron concentration n0 ∼ 10^14 ÷10^16 cm^−3, irradiated with 60Co y-quanta or 1-MeV electrons, and isochronously annealed for 20 min in the temperature interval 180–380∘C, in which divacancy-oxygen (V2O) complexes are formed and annealed, has been studied in detail. The nonequilibrium charge carrier lifetime т is found to significantly decrease after the annealing in a temperature interval from 180 to 280∘C, with the effect being stronger for low-resistive n-Si. It is shown that a change in т after the annealing at 180–380∘C is caused by divacancy defects, most probably V2O. By analyzing the experimental data with the help of the Shockley–Read–Hall statistics, it is found that the formation of V2O defects is characterized by an activation energy of 1.25±0.05 eV and a frequency factor of (1±0.5)×10^9 s^−1, and their annealing by an activation energy of 1.54±0.09 eV and a frequency factor of (2.1±1.4)×10^10 s^−1. The values of the hole capture cross-sections by singly and doubly charged acceptor states of V2O are obtained as: (5±2)×10^−13 and (8±4)×10^−12 cm^2, respectively.
References
S.D. Brotherton, P. Bradley. Defect production and lifetime control in electron and y-irradiated silicon. J. Appl. Phys. 53, 5720 (1982) https://doi.org/10.1063/1.331460
A. Hallen, N. Keskitalo, F. Masszi, V. Nagl. Lifetime in proton irradiated silicon. J. Appl. Phys. 79, 3906 (1996). https://doi.org/10.1063/1.361816
H. Bleichner, P. Jonsson, N. Keskitalo, E. Nordlander. Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron-irradiated p-type silicon, J. Appl. Phys. 79, 9142 (1996). https://doi.org/10.1063/1.362585
M. Kras'ko, A. Kraitchinskii, A. Kolosiuk, V. Voitovych, R. Rudenko, V. Povarchuk. Radiation damage of carrier lifetime and conductivity in Sn and Pb doped n-Si. Solid State Phenom. 205–206, 323 (2014).
E. Gaubas, E. Simoen, J. Vanhellemont. Carrier lifetime spectroscopy for defect characterization in semiconductor materials and devices. ECS J. Solid State Sci. 5, 3108 (2016). https://doi.org/10.1149/2.0201604jss
Y.-H. Lee, J.W. Corbett. EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes, Phys. Rev. B 13, 2653 (1976). https://doi.org/10.1103/PhysRevB.13.2653
M. Moll, H. Feick, E. Fretwurst, G. Lindstrom, C. Schutze. Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy, Nucl. Instrum. Meth. Phys. A 388, 335 (1997). https://doi.org/10.1016/S0168-9002(97)00003-X
K. Gill, G. Hall, B. MacEvoy. Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J. Appl. Phys. 82, 126 (1997). https://doi.org/10.1063/1.365790
E. Monakhov, B. Avset, A. Hallen, B. Svensson. Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si. Phys. Rev. B 65, 233207 (2002). https://doi.org/10.1103/PhysRevB.65.233207
G. Alfieri, E. Monakhov, B. Avset, B. Svensson. Evidence for identification of the divacancy-oxygen center in Si. Phys. Rev. B 68, 233202 (2003). https://doi.org/10.1103/PhysRevB.68.233202
V. Markevich, A. Peaker, S. Lastovskii, L. Murin, J. Lindstrom. Defect reactions associated with divacancy elimination in silicon. J. Phys.: Condens. Matter 15, S2779 (2003). https://doi.org/10.1088/0953-8984/15/39/002
M. Mikelsen, E. Monakhov, G. Alfieri, B. Avset, B. Svensson. Kinetics of divacancy annealing and divacancy-oxygen formation in oxygen-enriched high-purity silicon. Phys. Rev. B 72, 195207 (2005). https://doi.org/10.1103/PhysRevB.72.195207
M.-A. Trauwaert, J. Vanhellemont, H. Maes, A.-M. Van Bavel, G. Langouche, P. Clauws. Low-temperature anneal of the divacancy in p-type silicon: A transformation from V2 to VxOy complexes? Appl. Phys. Lett. 66, 3056 (1995). https://doi.org/10.1063/1.114276
V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin, J. Coutinho, V.J.B. Torres, L. Dobaczewski, B.G. Svensson. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon. Phys. Status Solidi A 208, 568 (2011). https://doi.org/10.1002/pssa.201000265
N. Ganagona, B. Raeissi, L. Vines, E. Monakhov, B. Svensson. Formation of donor and acceptor states of the divacancy–oxygen centre in p-type Cz-silicon. J. Phys.: Condens. Matter 24, 435801 (2012). https://doi.org/10.1088/0953-8984/24/43/435801
V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin. Donor levels of the divacancy-oxygen defect in silicon. J. Appl. Phys. 115, 012004 (2014). https://doi.org/10.1063/1.4837995
I. Pintilie, E. Fretwurst, G. Lindstrom, J. Stahl. Close to midgap trapping level in 60Co gamma irradiated silicon detectors. Appl. Phys. Lett. 81, 165 (2002). https://doi.org/10.1063/1.1490397
M. Kras'ko, A. Kraitchinskii, V. Neimash, A. Kolosiuk, L. Shpinar. On the nature of "negative" annealing of the nonequilibrium charge carrier lifetime in irradiated n-Si, Ukr. J. Phys. 52, 162 (2007).
V. Markevich, A. Peaker, S. Lastovskii, V. Gusakov, I. Medvedeva, L. Murin. Formation of radiation-induced defects in Si crystals irradiated with electrons at elevated temperatures. Solid State Phenom. 156–158, 299 (2010).
V. Neimash, V. Siratskii, M. Sosnin, V. Shakhovtsov, V. Shindich. The thermal donors influence on radiation defecting in silicon, Fiz. Tekh. Poluprovodn. 23, 250 (1989) (in Russian).
I. Kolkovskii, P. Lugakov, V. Shusha. Charge-carrier recombination in silicon irradiated with y-rays of different energies. Phys. Status Solidi A 83, 299 (1984). https://doi.org/10.1002/pssa.2210830133
M. Kras'ko, V. Neimash, A. Kraitchinskii, A. Kolosiuk, O. Kabaldin. Influence of A- and E-centers on the lifetime of nonequilibrium charge carriers in y-irradiated n-Si. Ukr. J. Phys. 53, 683 (2008).
A. Zubrilov, S. Koveshnikov, Effect of impurity composition of n-type Si on the radiation-induced defect formation and degradation of minority-charge-carrier lifetime under y-irradiation. Fiz. Tekh. Poluprovodn. 25, 1332 (1991) (in Russian).
M.-L. David, E. Simoen, C. Claeys, V. Neimash, M. Kras'ko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J.F. Barbot. On the effect of lead on irradiation induced defects in silicon. Solid State Phenom. 108–109, 373 (2005). https://doi.org/10.4028/www.scientific.net/SSP.108-109.373
P. Pellegrino, P. L’ev^eque, J. Lalita, A. Hall’e, B.G. Svensson. Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64, 195211 (2001). https://doi.org/10.1103/PhysRevB.64.195211
J. Coutinho, R. Jones, S. ¨ Oberg, P. Briddon. The formation, dissociation and electrical activity of divacancy-oxygen complexes in Si. Physica B 340–342, 523 (2003). https://doi.org/10.1016/j.physb.2003.09.143
M. Mikelsen, J. Bleka, J. Christensen, E. Monakhov, B. Svensson. Annealing of the divacancy-oxyge and vacancy-oxygen complexes in silicon. Phys. Rev. B 75, 155202 (2007). https://doi.org/10.1103/PhysRevB.75.155202
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.