Influence of Divacancy-Oxygen Defects on Recombination Properties of n-Si Subjected to Irradiation and Subsequent Annealing

  • M. M. Kras’ko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. G. Kolosiuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Voitovych Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Yu. Povarchuk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. S. Roguts’kyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: gamma irradiation, divacancy-oxygen defect, charge carrier lifetime, silicon

Abstract

The variation of recombination properties in n-Si grown by the Czochralski method, doped to the free electron concentration n0 ∼ 10^14 ÷10^16 cm^−3, irradiated with 60Co y-quanta or 1-MeV electrons, and isochronously annealed for 20 min in the temperature interval 180–380∘C, in which divacancy-oxygen (V2O) complexes are formed and annealed, has been studied in detail. The nonequilibrium charge carrier lifetime т is found to significantly decrease after the annealing in a temperature interval from 180 to 280∘C, with the effect being stronger for low-resistive n-Si. It is shown that a change in т after the annealing at 180–380∘C is caused by divacancy defects, most probably V2O. By analyzing the experimental data with the help of the Shockley–Read–Hall statistics, it is found that the formation of V2O defects is characterized by an activation energy of 1.25±0.05 eV and a frequency factor of (1±0.5)×10^9 s^−1, and their annealing by an activation energy of 1.54±0.09 eV and a frequency factor of (2.1±1.4)×10^10 s^−1. The values of the hole capture cross-sections by singly and doubly charged acceptor states of V2O are obtained as: (5±2)×10^−13 and (8±4)×10^−12 cm^2, respectively.

References

S.D. Brotherton, P. Bradley. Defect production and lifetime control in electron and y-irradiated silicon. J. Appl. Phys. 53, 5720 (1982) https://doi.org/10.1063/1.331460

A. Hallen, N. Keskitalo, F. Masszi, V. Nagl. Lifetime in proton irradiated silicon. J. Appl. Phys. 79, 3906 (1996). https://doi.org/10.1063/1.361816

H. Bleichner, P. Jonsson, N. Keskitalo, E. Nordlander. Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron-irradiated p-type silicon, J. Appl. Phys. 79, 9142 (1996). https://doi.org/10.1063/1.362585

M. Kras'ko, A. Kraitchinskii, A. Kolosiuk, V. Voitovych, R. Rudenko, V. Povarchuk. Radiation damage of carrier lifetime and conductivity in Sn and Pb doped n-Si. Solid State Phenom. 205–206, 323 (2014).

E. Gaubas, E. Simoen, J. Vanhellemont. Carrier lifetime spectroscopy for defect characterization in semiconductor materials and devices. ECS J. Solid State Sci. 5, 3108 (2016). https://doi.org/10.1149/2.0201604jss

Y.-H. Lee, J.W. Corbett. EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes, Phys. Rev. B 13, 2653 (1976). https://doi.org/10.1103/PhysRevB.13.2653

M. Moll, H. Feick, E. Fretwurst, G. Lindstrom, C. Schutze. Comparison of defects produced by fast neutrons and 60Co-gammas in high-resistivity silicon detectors using deep-level transient spectroscopy, Nucl. Instrum. Meth. Phys. A 388, 335 (1997). https://doi.org/10.1016/S0168-9002(97)00003-X

K. Gill, G. Hall, B. MacEvoy. Bulk damage effects in irradiated silicon detectors due to clustered divacancies. J. Appl. Phys. 82, 126 (1997). https://doi.org/10.1063/1.365790

E. Monakhov, B. Avset, A. Hallen, B. Svensson. Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si. Phys. Rev. B 65, 233207 (2002). https://doi.org/10.1103/PhysRevB.65.233207

G. Alfieri, E. Monakhov, B. Avset, B. Svensson. Evidence for identification of the divacancy-oxygen center in Si. Phys. Rev. B 68, 233202 (2003). https://doi.org/10.1103/PhysRevB.68.233202

V. Markevich, A. Peaker, S. Lastovskii, L. Murin, J. Lindstrom. Defect reactions associated with divacancy elimination in silicon. J. Phys.: Condens. Matter 15, S2779 (2003). https://doi.org/10.1088/0953-8984/15/39/002

M. Mikelsen, E. Monakhov, G. Alfieri, B. Avset, B. Svensson. Kinetics of divacancy annealing and divacancy-oxygen formation in oxygen-enriched high-purity silicon. Phys. Rev. B 72, 195207 (2005). https://doi.org/10.1103/PhysRevB.72.195207

M.-A. Trauwaert, J. Vanhellemont, H. Maes, A.-M. Van Bavel, G. Langouche, P. Clauws. Low-temperature anneal of the divacancy in p-type silicon: A transformation from V2 to VxOy complexes? Appl. Phys. Lett. 66, 3056 (1995). https://doi.org/10.1063/1.114276

V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin, J. Coutinho, V.J.B. Torres, L. Dobaczewski, B.G. Svensson. Structure and electronic properties of trivacancy and trivacancy-oxygen complexes in silicon. Phys. Status Solidi A 208, 568 (2011). https://doi.org/10.1002/pssa.201000265

N. Ganagona, B. Raeissi, L. Vines, E. Monakhov, B. Svensson. Formation of donor and acceptor states of the divacancy–oxygen centre in p-type Cz-silicon. J. Phys.: Condens. Matter 24, 435801 (2012). https://doi.org/10.1088/0953-8984/24/43/435801

V. Markevich, A. Peaker, B. Hamilton, S. Lastovskii, L. Murin. Donor levels of the divacancy-oxygen defect in silicon. J. Appl. Phys. 115, 012004 (2014). https://doi.org/10.1063/1.4837995

I. Pintilie, E. Fretwurst, G. Lindstrom, J. Stahl. Close to midgap trapping level in 60Co gamma irradiated silicon detectors. Appl. Phys. Lett. 81, 165 (2002). https://doi.org/10.1063/1.1490397

M. Kras'ko, A. Kraitchinskii, V. Neimash, A. Kolosiuk, L. Shpinar. On the nature of "negative" annealing of the nonequilibrium charge carrier lifetime in irradiated n-Si, Ukr. J. Phys. 52, 162 (2007).

V. Markevich, A. Peaker, S. Lastovskii, V. Gusakov, I. Medvedeva, L. Murin. Formation of radiation-induced defects in Si crystals irradiated with electrons at elevated temperatures. Solid State Phenom. 156–158, 299 (2010).

V. Neimash, V. Siratskii, M. Sosnin, V. Shakhovtsov, V. Shindich. The thermal donors influence on radiation defecting in silicon, Fiz. Tekh. Poluprovodn. 23, 250 (1989) (in Russian).

I. Kolkovskii, P. Lugakov, V. Shusha. Charge-carrier recombination in silicon irradiated with y-rays of different energies. Phys. Status Solidi A 83, 299 (1984). https://doi.org/10.1002/pssa.2210830133

M. Kras'ko, V. Neimash, A. Kraitchinskii, A. Kolosiuk, O. Kabaldin. Influence of A- and E-centers on the lifetime of nonequilibrium charge carriers in y-irradiated n-Si. Ukr. J. Phys. 53, 683 (2008).

A. Zubrilov, S. Koveshnikov, Effect of impurity composition of n-type Si on the radiation-induced defect formation and degradation of minority-charge-carrier lifetime under y-irradiation. Fiz. Tekh. Poluprovodn. 25, 1332 (1991) (in Russian).

M.-L. David, E. Simoen, C. Claeys, V. Neimash, M. Kras'ko, A. Kraitchinskii, V. Voytovych, A. Kabaldin, J.F. Barbot. On the effect of lead on irradiation induced defects in silicon. Solid State Phenom. 108–109, 373 (2005). https://doi.org/10.4028/www.scientific.net/SSP.108-109.373

P. Pellegrino, P. L’ev^eque, J. Lalita, A. Hall’e, B.G. Svensson. Annealing kinetics of vacancy-related defects in low-dose MeV self-ion-implanted n-type silicon, Phys. Rev. B 64, 195211 (2001). https://doi.org/10.1103/PhysRevB.64.195211

J. Coutinho, R. Jones, S. ¨ Oberg, P. Briddon. The formation, dissociation and electrical activity of divacancy-oxygen complexes in Si. Physica B 340–342, 523 (2003). https://doi.org/10.1016/j.physb.2003.09.143

M. Mikelsen, J. Bleka, J. Christensen, E. Monakhov, B. Svensson. Annealing of the divacancy-oxyge and vacancy-oxygen complexes in silicon. Phys. Rev. B 75, 155202 (2007). https://doi.org/10.1103/PhysRevB.75.155202

Published
2018-12-09
How to Cite
Kras’ko, M., Kolosiuk, A., Voitovych, V., Povarchuk, V., & Roguts’kyi, I. (2018). Influence of Divacancy-Oxygen Defects on Recombination Properties of n-Si Subjected to Irradiation and Subsequent Annealing. Ukrainian Journal of Physics, 63(12), 1095. https://doi.org/10.15407/ujpe63.12.1095
Section
Semiconductors and dielectrics

Most read articles by the same author(s)