Consideration of the Competing Factors in Calculations of the Characteristics of Non-Magnetic Degenerate Dwarfs

  • M. V. Vavrukh Ivan Franko National University of Lviv, Department of Astrophysics
  • D. V. Dzikovskyi Ivan Franko National University of Lviv, Department of Astrophysics
  • S. V. Smerechynskyi Ivan Franko National University of Lviv, Department of Astrophysics

Abstract

Using the equation of state of the electron-nuclear model at high densities and the mechanical equilibrium equation, we have investigated the influence of interparticle interactions and the axial rotation on the macroscopic characteristics (mass, surface shape) of massive degenerate dwarfs. We propose a method of solving the equilibrium equation in the case of rotation that uses the basis of universal functions of the radial variable. The conditions, under which the axial rotation can compensate for a weight loss of the mass due to the Coulomb interactions, have been established. The maximal value of the relativistic parameter, at which the stability is disturbed, is determined within the general theory of relativity (GTR).

Keywords mechanical equilibrium equation, interparticle interactions, axial rotation, basis of universal functions, stability of dwarfs

References


  1. W.S. Adams. The spectrum of the companion of Sirius. Publ. Astron. Soc. Pacific 27, 236 (1915).
    https://doi.org/10.1086/122440

  2. R.H. Fowler. On dense matter. Mon. Not. R. Astron. Soc. 87, 114 (1926).
    https://doi.org/10.1093/mnras/87.2.114

  3. S. Chandrasekhar. The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931).
    https://doi.org/10.1086/143324

  4. S. Chandrasekhar. Stellar configurations with degenerate cores. Mon. Not. R. Astron. Soc. 95, 676 (1935).
    https://doi.org/10.1093/mnras/95.8.676

  5. E. Shatzman. The analysis of starlight: Two centuries of astronomical spectroscopy. Ann. Astrophys. 9, 144 (1946).

  6. S.A. Kaplan. Superdense stars. Sci. Notes of I. Franko Lviv State Univ. Ser. Math. 4, 109 (1949).

  7. R.A. James. The structure and stability of rotating gas masses. Astrophys. J. 140, 552 (1964).
    https://doi.org/10.1086/147949

  8. E.E. Salpeter. Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669 (1961).
    https://doi.org/10.1086/147194

  9. Ya.B. Zeldovich, I.D. Novikov. Relativistic Astrophysics (Nauka, 1967) (in Russian).

  10. S.L. Shapiro, S.A. Teukolsky. Black Holes, White Dwarfs and Neutron Stars (Cornell Univ., 1983).
    https://doi.org/10.1002/9783527617661

  11. M.V. Vavrukh, S.V. Smerechinskii. A finite-temperature Chandrasekhar model: Determining the parameters and calculation of the characteristics of degenerate dwarfs. Astronomy Reports 56 (5), 363 (2012).
    https://doi.org/10.1134/S1063772912050071

  12. M. Vavrukh, S. Smerechynskyi, D. Dzikovskyi. The influence of the axial rotation on the degenerate dwarfs characteristics. Mathematical Modeling and Computing 4 (1), 107 (2017).
    https://doi.org/10.23939/mmc2017.01.107

  13. M.V. Vavrukh, D.V. Dzikovskyi, N.L. Tyshko. Reference system approach within the white-dwarfs theory Condens. Matter Phys. 20 (4), 43001 (2017).
    https://doi.org/10.5488/CMP.20.43001

  14. S. Chandrasekhar. The equilibrium of distorted polytropes. I. The rotational problem. Mon. Not. R. Astron. Soc. 93, 390 (1933).
    https://doi.org/10.1093/mnras/93.5.390

  15. A.H. Wapstra, K. Bos. The 1977 atomic mass evaluation: in four parts. Atomic Data and Nuclear Data Tables 19, 175 (1977).
    https://doi.org/10.1016/0092-640X(77)90019-5

  16. T. Hamada, E. Salpeter. Models for zero-temperature stars. Europ. Astrophys. J. 133, 683 (1961).
    https://doi.org/10.1086/147195

Published
2018-09-24
How to Cite
Vavrukh, M., Dzikovskyi, D., & Smerechynskyi, S. (2018). Consideration of the Competing Factors in Calculations of the Characteristics of Non-Magnetic Degenerate Dwarfs. Ukrainian Journal Of Physics, 63(9), 777. doi:10.15407/ujpe63.9.777
Section
General physics