Anomalies of the Sound Absorption Coefficient for Binary Solutions with a Critical Stratification Temperature

Authors

  • L. A. Bulavin Taras Shevchenko National University of Kyiv, Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine
  • O. I. Bilous National Aviation University
  • A. V. Balega Taras Shevchenko National University of Kyiv
  • O. S. Svechnikova Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe63.4.308

Keywords:

sound absorption coefficient, critical stratification point, binary solution, concentration fluctuations, acoustic relaxation

Abstract

The results of the analysis of experimental data concerning the sound absorption in the nitro-methane–n-pentanol and nitrobenzene-n-hexane solutions obtained in a wide frequency interval of 5–2800 MHz and measured along the isotherms and isoconcentrates, including their critical values, are presented. The detected anomalous dependences of the sound absorption coefficient were found to obey the laws of the dynamic scaling theory only in the fluctuation region of the problem parameters, wтfl ≫ 1. The sound frequency growth (f ≥ 110 MHz) in the examined frequency interval, as well as moving away from the critical temperature and concentration values, is proved to transit the system from the critical region into the crossover, wтfl ∼ 1, or even hydrodynamic, wтfl ≪ 1, one.

References

<ol>
<li>M.J. Amani, M.R. Gray, J.M. Shaw. Phase behavior of Athabasca bitumen+water mixtures at high temperature and pressure. J. Supercrit. Fluid. 77, 142 (2013).
<a href="https://doi.org/10.1016/j.supflu.2013.03.007">https://doi.org/10.1016/j.supflu.2013.03.007</a>
</li>
<li>M.A. Anisimov. Universality versus nonuniversality in asymmetric fluid criticality. Condens. Matter. Phys. 16, 23603 (2013).
<a href="https://doi.org/10.5488/CMP.16.23603">https://doi.org/10.5488/CMP.16.23603</a>
</li>
<li>D.A. Beysens, Y. Garrabos. The phase transition of gases and liquids. Physica A 281, 361 (2000).
<a href="https://doi.org/10.1016/S0378-4371(00)00030-3">https://doi.org/10.1016/S0378-4371(00)00030-3</a>
</li>
<li>J. Bonart. Phase transitions and diffusion in dissipative classical and quantum systems. Paris 6 (2013).
</li>
<li>M. Gross, F. Varnik. Critical dynamics of an isothermal compressible nonideal fluid. Phys. Rev. E 86, 61119 (2012).
<a href="https://doi.org/10.1103/PhysRevE.86.061119">https://doi.org/10.1103/PhysRevE.86.061119</a>
</li>
<li>L.A. Bulavin, Yu.O. Plevachuk, V.M. Sklyarchuk, Critical Stratification Phenomena in Liquids on the Earth and in Space (Naukova Dumka, 2001) (in Ukrainian).
</li>
<li>R.A. Ferrell. Decoupled-mode dynamical scaling theory of the binary-liquid phase transition. Phys. Rev. Lett. 24, 1169 (1970).
<a href="https://doi.org/10.1103/PhysRevLett.24.1169">https://doi.org/10.1103/PhysRevLett.24.1169</a>
</li>
<li>V.S. Sperkach, M.I. Shakhparonov. Theory of viscosity in liquids. Mechanism of water viscosity. Zh. Fiz. Khim. 55, 1732 (1981) (in Russian).
</li>
<li>R.A. Ferrell, J.K. Bhattacharjee. Dynamic universality and the critical sound velocity in a binary liquid. Phys. Rev. B 24, 4095 (1981).
<a href="https://doi.org/10.1103/PhysRevB.24.4095">https://doi.org/10.1103/PhysRevB.24.4095</a>
</li>
<li> M.A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals (Gordon and Breach, 1991).
</li>
<li> V.S. Sperkach, A.D. Alekhin, O.I. Bilous. Acoustic properties of liquid systems near the critical temperature. Ukr. Fiz. Zh. 49, 976 (2004) (in Ukrainian).
</li>
<li> S.Z. Mirzaev, U. Kaatze. Adiabatic coupling constant of mitrobenzene–n. Int. J. Thermophys. 37, 1 (2016).
</li>
<li> K. Jagannathan, A. Yethiraj. Dynamics of fluids near the consolute critical point: A molecular-dynamics study of the Widom–Rowlinson mixture. J. Chem. Phys. 122 (24), 244506 (2005).
<a href="https://doi.org/10.1063/1.1940053">https://doi.org/10.1063/1.1940053</a>
</li>
<li> J.K. Bhattacharjee, U. Kaatze. Fluctuations near the critical micelle concentration. I. Premicellar aggregation, relaxation rate, and isentropic compressibility. J. Phys. Chem. B 117, 3790 (2013).
<a href="https://doi.org/10.1021/jp4011185">https://doi.org/10.1021/jp4011185</a>
</li>
<li> L.A. Bulavin, O.I. Bilous, O.S. Svechnikova. Relaxation time of concentration fluctuations in a vicinity of the critical stratification point of the binary mixture n-pentanol–nitromethane. Ukr. Fiz. Zh. 61, 885 (2016) (in Ukrainian).
<a href="https://doi.org/10.15407/ujpe61.10.0879">https://doi.org/10.15407/ujpe61.10.0879</a>
</li></ol>

Published

2018-06-18

How to Cite

Bulavin, L. A., Bilous, O. I., Balega, A. V., & Svechnikova, O. S. (2018). Anomalies of the Sound Absorption Coefficient for Binary Solutions with a Critical Stratification Temperature. Ukrainian Journal of Physics, 63(4), 308. https://doi.org/10.15407/ujpe63.4.308

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 3 4 5 6 > >>