New Model of Density Distribution for Fermionic Dark Matter Halos

Authors

  • A. V. Rudakovskyi Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine; Taras Shevchenko National University of Kyiv; Main Astronomical Observatory, Nat. Acad. of Sci. of Ukraine
  • D. O. Savchenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine; Main Astronomical Observatory, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.9.769

Keywords:

dark matter: warm, cold, dark matter halo profile, cores, Navarro–Frenk–White profile

Abstract

We formulate a new model of density distribution for halos made of warm dark matter (WDM) particles. The model is described by a single microphysical parameter – the mass (or, equivalently, the maximal value of the initial phase-space density distribution) of dark matter particles. Given the WDM particle mass and the parameters of a dark matter density profile at the halo periphery, this model predicts the inner density profile. In the case of initial Fermi–Dirac distribution, we successfully reproduce cored dark matter profiles from N-body simulations. We calculate also the core radii of warm dark matter halos of dwarf spheroidal galaxies for particle masses mFD = 100, 200, 300, and 400 eV.

References

S.D.M. White, C.S. Frenk, M. Davis. Clustering in a neutrino-dominated universe. Astrophys. J. 274, L1 (1983).

https://doi.org/10.1086/184139

S. Tremaine, J. E. Gunn. Dynamical role of light neutral leptons in cosmology. Phys. Rev. Lett. 42, 407 (1979).

https://doi.org/10.1103/PhysRevLett.42.407

L. Bergstr?om. Non-baryonic dark matter: observational evidence and detection methods. Rep. Progr. Phys. 63, 793 (2000).

https://doi.org/10.1088/0034-4885/63/5/2r3

G. Bertone, D. Hooper, J. Silk. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 405, 279 (2005).

https://doi.org/10.1016/j.physrep.2004.08.031

J.L. Feng. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys 48, 495 (2010).

https://doi.org/10.1146/annurev-astro-082708-101659

S. Gardner, G.M. Fuller. Dark matter studies entrain nuclear physics. Progr. Part. Nucl. Phys. 71, 167 (2013).

https://doi.org/10.1016/j.ppnp.2013.03.001

A. Palazzo, D. Cumberbatch, A. Slosar, J. Silk. Sterile neutrinos as subdominant warm dark matter. Phys. Rev. D 76, 10, 103511 (2007).

A. Boyarsky, O. Ruchayskiy, M. Shaposhnikov. The role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part. Sci. 59, 191 (2009).

https://doi.org/10.1146/annurev.nucl.010909.083654

J.R. Primack. Dark matter and structure formation in the universe. arXiv:astro-ph/9707285.

S.D. M. White, M.J. Rees. Core condensation in heavy halos – A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341 (1978).

https://doi.org/10.1093/mnras/183.3.341

G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees. Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517 (1984).

https://doi.org/10.1038/311517a0

G.S. Bisnovatyi-Kogan, I.D. Novikov. Cosmology with a nonzero neutrino rest mass. Soviet Ast. 24, 516 (1980).

J.R. Bond, G. Efstathiou, J. Silk. Massive neutrinos and the large-scale structure of the universe. Phys. Rev. Lett. 45, 1980 (1980).

https://doi.org/10.1103/PhysRevLett.45.1980

J.F. Navarro, C.S. Frenk, S.D.M. White. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

https://doi.org/10.1086/177173

J.F. Navarro, C.S. Frenk, S.D.M. White. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493 (1997).

https://doi.org/10.1086/304888

J.E. Taylor, J.F. Navarro. The phase-space density profiles of cold dark matter halos. Astrophys. J. 563, 483 (2001).

https://doi.org/10.1086/324031

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi. A lower bound on the mass of dark matter particles. J. Cosmol. Astropart. Phys. 3, 005 (2009).

R. Ruffini, L. Stella. On semi-degenerate equilibrium configurations of a collisionless self-gravitating Fermi gas. Astron. Astrophys. 119, 35 (1983).

N. Bili’c, R.D. Viollier. Gravitational phase transition of fermionic matter. Phys. Lett. B 408, 75 (1997).

https://doi.org/10.1016/S0370-2693(97)00825-3

G.W. Angus. A lower limit on the dark particle mass from dSphs. J. Cosmol. Astropart. Phys. 3, 026 (2010).

H. J. de Vega, P. Salucci, N.G. Sanchez. Observational rotation curves and density profiles versus the Thomas–Fermi galaxy structure theory. Mon. Not. R. Astron. Soc. 442, 2717 (2014).

https://doi.org/10.1093/mnras/stu972

H.J. de Vega, N.G. Sanchez. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies. Int. J. Mod. Phys. A 31, 1650073 (2016).

https://doi.org/10.1142/S0217751X16500731

M. Merafina, G. Alberti. Self-gravitating Newtonian models of fermions with anisotropy and cutoff energy in their distribution function. Phys. Rev. D 89 (12), 123010 (2014).

https://doi.org/10.1103/PhysRevD.89.123010

V. Domcke, A. Urbano. Dwarf spheroidal galaxies as degenerate gas of free fermions. J. Cosmol. Astropart. Phys. 1, 002 (2015).

R. Ruffini, C.R. Arg?uelles, J.A. Rueda. On the core-halo distribution of dark matter in galaxies. Mon. Not. R. Astron. Soc. 451, 622 (2015).

https://doi.org/10.1093/mnras/stv1016

P.-H. Chavanis, M. Lemou, F. M?ehats. Models of dark matter halos based on statistical mechanics: The fermionic King model. Phys. Rev. D 92, 12, 123527 (2015).

C.R. Arg?uelles, A. Krut, J.A. Rueda, R. Ruffini. Novel constraints on fermionic dark matter from galactic observables. arXiv:1606.07040 [astro-ph.GA].

S. Shao, L. Gao, T. Theuns, C.S. Frenk. The phasespace density of fermionic dark matter haloes. Mon. Not. R. Astron. Soc. 430, 2346 (2013).

https://doi.org/10.1093/mnras/stt053

A.V. Macci`o, S. Paduroiu, D. Anderhalden, A. Schneider, B. Moore. Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. R. Astron. Soc. 424, 1105 (2012).

https://doi.org/10.1111/j.1365-2966.2012.21284.x

A.V. Macci`o, S. Paduroiu, D. Anderhalden, A. Schneider, B. Moore. Erratum: Cores in warm dark matter haloes: a Catch 22 problem. Mon. Not. R. Astron. Soc. 428, 3715 (2013).

https://doi.org/10.1093/mnras/sts251

A. V. Macci`o, O. Ruchayskiy, A. Boyarsky, J.C. Mu?noz-Cuartas. The inner structure of haloes in cold + warm dark matter models. Mon. Not. R. Astron. Soc. 428, 882 (2013).

https://doi.org/10.1093/mnras/sts078

D. Anderhalden, A. Schneider, A.V. Macci`o, J. Diemand, G. Bertone. Hints on the nature of dark matter from the properties of Milky Way satellites. J. Cosmol. Astropart. Phys. 3, 014 (2013).

J.S. Bullock, M. Boylan-Kolchin. Small-Scale Challenges to the ?CDM Paradigm, Ann. Rev. Astron. Astrophys 55, 343 (2017).

https://doi.org/10.1146/annurev-astro-091916-055313

J.H. Jeans. On the theory of star-streaming and the structure of the universe. Mon. Not. R. Astron. Soc. 76, 70 (1915).

https://doi.org/10.1093/mnras/76.2.70

D. Lynden-Bell. Stellar dynamics. Only isolating integrals should be used in Jeans theorem. Mon. Not. R. Astron. Soc. 124, 1 (1962).

https://doi.org/10.1093/mnras/124.1.1

C. Efthymiopoulos, N. Voglis, C. Kalapotharakos. Special features of galactic dynamics, in Lecture Notes in Physics edited by D. Benest, C. Froeschle, and E. Lega (Springer, 2007).

G. Contopoulos. A classification of the integrals of motion. Astrophys. J. 138, 1297 (1963).

https://doi.org/10.1086/147724

R.A. Ibata, G. Gilmore, M.J. Irwin. A dwarf satellite galaxy in Sagittarius. Nature 370, 194 (1994).

https://doi.org/10.1038/370194a0

S.R. Majewski, M.F. Skrutskie, M.D. Weinberg, J.C. Ostheimer. A two micron all sky survey view of the sagittarius dwarf galaxy. I. Morphology of the sagittarius core and tidal arms. Astrophys. J. 599, 1082 (2003).

https://doi.org/10.1086/379504

J.D. Simon, M. Geha. The kinematics of the ultrafaint Milky Way satellites: Solving the missing satellite problem. Astrophys. J. 670, 313 (2007).

https://doi.org/10.1086/521816

R. Smith, M. Fellhauer, G.N. Candlish, R.Wojtak, J.P. Farias, M. Bla?na. Ursa Major II – reproducing the observed properties through tidal disruption. Mon. Not. R. Astron. Soc. 433, 2529 (2013).

https://doi.org/10.1093/mnras/stt925

J.L. Carlin, C.J. Grillmair, R.R. Mu?noz, D.L. Nidever, S.R. Majewski. Kinematics and metallicities in the Bo?otes III stellar overdensity: A disrupted dwarf galaxy? Astrophys. J. 702, L9 (2009).

https://doi.org/10.1088/0004-637X/702/1/L9

S. Kazantzidis, J. Magorrian, B. Moore. Generating equilibrium dark matter halos: Inadequacies of the local Maxwellian approximation. Astrophys. J. 601, 37 (2004).

https://doi.org/10.1086/380192

S.H. Hansen, J. Stadel. The velocity anisotropy – density slope relation. J. Cosmol. Astropart. Phys. 5, 014 (2006).

A. Zait, Y. Hoffman, I. Shlosman. Dark matter halos: Velocity anisotropy-density slope relation. Astrophys. J. 682, 835 (2008).

https://doi.org/10.1086/589431

M. Sparre, S.H. Hansen. The behavior of shape and velocity anisotropy in dark matter haloes. J. Cosmol. Astropart. Phys. 10, 049 (2012).

G.A. Mamon, A. Biviano, G. Bou’e. MAMPOSSt: Modelling anisotropy and mass profiles of observed spherical systems – I. Gaussian 3D velocities. Mon. Not. R. Astron. Soc. 429, 3079 (2013).

https://doi.org/10.1093/mnras/sts565

L. Beraldo e Silva, G.A. Mamon, M. Duarte, R. Wojtak, S. Peirani, G. Bou’e. Anisotropic q-Gaussian 3D velocity distributions in ?CDM haloes. Mon. Not. R. Astron. Soc. 452, 944 (2015).

https://doi.org/10.1093/mnras/stv1321

C.A. Vera-Ciro, L.V. Sales, A. Helmi, J.F. Navarro. The shape of dark matter subhaloes in the Aquarius simulations. Mon. Not. R. Astron. Soc. 439, 2863 (2014).

https://doi.org/10.1093/mnras/stu153

K. El-Badry, A.R. Wetzel, M. Geha, E. Quataert, P.F. Hopkins, D. Kere?s, T.K. Chan, C.-A. Faucher-Gigu`ere. When the jeans do not fit: How stellar feedback drives stellar kinematics and complicates dynamical modeling in low-mass galaxies. Astrophys. J. 835, 193 (2017).

https://doi.org/10.3847/1538-4357/835/2/193

A. Eilersen, S. H. Hansen, X. Zhang. Analytical derivation of the radial distribution function in spherical dark matter haloes. Mon. Not. R. Astron. Soc. 467, 2061 (2017).

K. Hayashi, M. Chiba. Probing non-spherical dark halos in the galactic dwarf galaxies. Astrophys. J. 755, 145 (2012).

https://doi.org/10.1088/0004-637X/755/2/145

K. Hayashi, M. Chiba. Structural properties of nonspherical dark halos in Milky Way and Andromeda dwarf spheroidal galaxies. Astrophys. J. 810, 22 (2015).

https://doi.org/10.1088/0004-637X/810/1/22

C.F.P. Laporte, M.G. Walker, J. Pe?narrubia. Measuring the slopes of mass profiles for dwarf spheroidals in triaxial cold dark matter potentials. Mon. Not. R. Astron. Soc. 433, L54 (2013).

https://doi.org/10.1093/mnrasl/slt057

M.G. Walker, J. Pe?narrubia. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

https://doi.org/10.1088/0004-637X/742/1/20

A. Genina, A. Ben’?tez-Llambay, C.S. Frenk, S. Cole, A. Fattahi, J.F. Navarro, K.A. Oman, T. Sawala, T. Theuns. The core-cusp problem: A matter of perspective. Mon. Not. R. Astron. Soc. 474, 1398 (2018).

https://doi.org/10.1093/mnras/stx2855

D.J.R. Campbell, C.S. Frenk, A. Jenkins, V.R. Eke, J.F. Navarro, T. Sawala, M. Schaller, A. Fattahi, K.A. Oman, T. Theuns. Knowing the unknowns: Uncertainties in simple estimators of galactic dynamical masses. Mon. Not. R. Astron. Soc. 469, 2335 (2017).

https://doi.org/10.1093/mnras/stx975

N.C. Amorisco, N. W. Evans. A troublesome past: Chemo-dynamics of the fornax dwarf spheroidal. Astrophys. J. 756, L2 (2012).

https://doi.org/10.1088/2041-8205/756/1/L2

N. Ho, M. Geha, R.R. Mu?noz, P. Guhathakurta, J. Kalirai, K.M. Gilbert, E. Tollerud, J. Bullock, R.L. Beaton, S.R. Majewski. Stellar kinematics of the Andromeda II dwarf spheroidal galaxy. Astrophys. J. 758, 124 (2012).

https://doi.org/10.1088/0004-637X/758/2/124

A. del Pino, E.L. Lokas, S.L. Hidalgo, S. Fouquet. The structure of Andromeda II dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 469, 4999 (2017).

https://doi.org/10.1093/mnras/stx1195

M.G. Walker, M. Mateo, E.W. Olszewski, R. Bernstein, X.Wang, M.Woodroofe. Internal kinematics of the Fornax dwarf spheroidal galaxy. AJ 131, 2114 (2006).

A. Koch, M.I. Wilkinson, J.T. Kleyna, G.F. Gilmore, E.K. Grebel, A.D. Mackey, N.W. Evans, R.F.G. Wyse. Stellar kinematics and metallicities in the Leo I dwarf spheroidal galaxy-wide-field implications for galactic evolution. Astrophys. J. 657, 241 (2007).

https://doi.org/10.1086/510879

P.M. Frinchaboy, S.R. Majewski, R.R. Mu?noz, D.R. Law, E.L. Lokas, W.E. Kunkel, R.J. Patterson, K.V. Johnston. A 2MASS All-sky view of the Sagittarius Dwarf Galaxy. VII. Kinematics of the main body of the Sagittarius dSph. Astrophys. J. 756, 74 (2012).

https://doi.org/10.1088/0004-637X/756/1/74

A.W. McConnachie. The Observed Properties of Dwarf Galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

https://doi.org/10.1088/0004-6256/144/1/4

M.E. Spencer, M. Mateo, M.G. Walker, E.W. Olszewski. A multi-epoch kinematic study of the remote dwarf spheroidal galaxy Leo II. Astrophys. J. 836, 202 (2017).

https://doi.org/10.3847/1538-4357/836/2/202

A.S. Eddington. The distribution of stars in globular clusters. Mon. Not. R. Astron. Soc. 76, 572 (1916)

https://doi.org/10.1093/mnras/76.7.572

J. Binney, S. Tremaine. Galactic Dynamics (Princeton Univ. Press, 2008).

L.M.Widrow. Distribution functions for cuspy dark matter density profiles. Astrophys. J. Suppl. 131, 39 (2000).

https://doi.org/10.1086/317367

P. Bode, J.P. Ostriker, N. Turok. Halo formation in warm dark matter models. Astrophys. J. 556, 93 (2001).

https://doi.org/10.1086/321541

L. Randall, J. Scholtz, J. Unwin. Cores in dwarf Galaxies from Fermi repulsion. Mon. Not. R. Astron. Soc. 467, 1515 (2017).

https://doi.org/10.1093/mnras/stx161

A. Burkert. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25 (1995).

https://doi.org/10.1086/309560

C. Di Paolo, F. Nesti, F.L. Villante. Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 475, 5385 (2018).

https://doi.org/10.1093/mnras/sty091

N.C. Amorisco, A. Agnello, N.W. Evans. The core size of the Fornax dwarf spheroidal. Mon. Not. R. Astron. Soc. 429, L89 (2013).

https://doi.org/10.1093/mnrasl/sls031

J.I. Read, G. Iorio, O. Agertz, F. Fraternali. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ?CDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019 (2017).

https://doi.org/10.1093/mnras/stx147

P.S. Corasaniti, S. Agarwal, D.J.E. Marsh, S. Das. Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts. Phys. Rev. D 95 (8), 083512 (2017).

https://doi.org/10.1103/PhysRevD.95.083512

A. Schneider, S. Trujillo-Gomez, E. Papastergis, D.S. Reed, G. Lake. Hints against the cold and collisionless nature of dark matter from the galaxy velocity function. Mon. Not. R. Astron. Soc. 470, 1542 (2017).

https://doi.org/10.1093/mnras/stx1294

N. Menci, A. Merle, M. Totzauer, A. Schneider, A. Grazian, M. Castellano, N.G. Sanchez. Fundamental physics with the hubble frontier fields: Constraining dark matter models with the abundance of extremely faint and distant galaxies. Astrophys. J. 836, 61 (2017).

https://doi.org/10.3847/1538-4357/836/1/61

J.F. Cherry, S. Horiuchi. Closing in on resonantly produced sterile neutrino dark matter. Phys. Rev. D 95 (8), 083015 (2017).

https://doi.org/10.1103/PhysRevD.95.083015

S. Birrer, A. Amara, A. Refregier. Lensing substructure quantification in RXJ1131-1231: A 2 keV lower bound on dark matter thermal relic mass. J. Cosmol. Astropart. Phys. 5, 037 (2017).

V. Ir?si?c, M. Viel, M.G. Haehnelt, J.S. Bolton, S. Cristiani, G.D. Becker, V. D'Odorico, G. Cupani, T.-S. Kim, T.A.M. Berg, S. L’opez, S. Ellison, L. Christensen, K.D. Denney, G. Worseck. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-a forest data. Phys. Rev. D 96 (2), 023522 (2017).

C. Y`eche, N. Palanque-Delabrouille, J. Baur, H. du Mas des Bourboux. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100. J. Cosmol. Astropart. Phys. 6, 047 (2017).

L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, P. Villanueva-Domingo. Warm dark matter and the ionization history of the Universe. Phys. Rev. D 96 (10), 103539 (2017).

https://doi.org/10.1103/PhysRevD.96.103539

P. Dayal, T.R. Choudhury, F. Pacucci, V. Bromm. Warm dark matter constraints from high-z direct collapse black holes using the JWST. Mon. Not. R. Astron. Soc. 472, 4414 (2017).

https://doi.org/10.1093/mnras/stx2282

J. Baur, N. Palanque-Delabrouille, C. Y`eche, A. Boyarsky, O. Ruchayskiy, ? E. Armengaud, J. Lesgourgues. Constraints from Ly-a forests on non-thermal dark matter including resonantly-produced sterile neutrinos. J. Cosmol. Astropart. Phys. 12, 013 (2017).

N. Menci, E. Giallongo, A. Grazian, D. Paris, A. Fontana, L. Pentericci. Observing the very low surface brightness dwarfs in a deep field in the VIRGO cluster: Constraints on dark matter scenarios. Astron. Astrophys. 604, A59 (2017).

https://doi.org/10.1051/0004-6361/201731237

A. Dekel, J. Silk. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39 (1986).

https://doi.org/10.1086/164050

A. Ferrara, E. Tolstoy. The role of stellar feedback and dark matter in the evolution of dwarf galaxies. Mon. Not. R. Astron. Soc. 313, 291 (2000).

https://doi.org/10.1046/j.1365-8711.2000.03209.x

J.I. Read, G. Gilmore. Mass loss from dwarf spheroidal galaxies: The origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107 (2005).

https://doi.org/10.1111/j.1365-2966.2004.08424.x

J.I. Read, A.P. Pontzen, M. Viel. On the formation of dwarf galaxies and stellar haloes. Mon. Not. R. Astron. Soc. 371, 885 (2006).

https://doi.org/10.1111/j.1365-2966.2006.10720.x

S. Mashchenko, J. Wadsley, H.M.P. Couchman. Stellar feedback in dwarf galaxy formation. Science 319, 174 (2008).

https://doi.org/10.1126/science.1148666

A. Pontzen, F. Governato. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464 (2012).

https://doi.org/10.1111/j.1365-2966.2012.20571.x

F. Governato, A. Zolotov, A. Pontzen, C. Christensen, S.H. Oh, A.M. Brooks, T. Quinn, S. Shen, J. Wadsley. Cuspy no more: how outflows affect the central dark matter and baryon distribution in cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231 (2012).

https://doi.org/10.1111/j.1365-2966.2012.20696.x

R. Teyssier, A. Pontzen, Y. Dubois, J.I. Read. Cuspcore transformations in dwarf galaxies: Observational predictions. Mon. Not. R. Astron. Soc. 429, 3068 (2013).

https://doi.org/10.1093/mnras/sts563

A. Di Cintio, C.B. Brook, A.V. Macci`o, G.S. Stinson, A. Knebe, A. A. Dutton, J. Wadsley. The dependence of dark matter profiles on the stellar-to-halo mass ratio: A prediction for cusps versus cores Mon. Not. R. Astron. Soc. 437, 415 (2014).

https://doi.org/10.1093/mnras/stt1891

J.I. Read, O. Agertz, M.L.M. Collins. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573 (2016).

https://doi.org/10.1093/mnras/stw713

Downloads

Published

2018-09-24

How to Cite

Rudakovskyi, A. V., & Savchenko, D. O. (2018). New Model of Density Distribution for Fermionic Dark Matter Halos. Ukrainian Journal of Physics, 63(9), 769. https://doi.org/10.15407/ujpe63.9.769

Issue

Section

Fields and elementary particles