Quantum Mechanical Calculations of a Fusion Reaction for Some Selected Halo Systems

Authors

  • F. A. Majeed Department of Physics, College of Education for Pure Sciences, University of Babylon
  • F. A. Mahdi Department of Physics, College of Education for Pure Sciences, University of Babylon

DOI:

https://doi.org/10.15407/ujpe64.1.11

Keywords:

fusion cross-section, fusion barrier distribution, quantum mechanical approach, breakup channel

Abstract

The effect of the breakup channel on the fusion reaction of weakly bound systems by means of a quantum mechanical approach has been discussed. The total fusion reaction cross-section Ofus, the fusion barrier distribution Dfus and the mean angular momentum ⟨L⟩ for the systems 6He+64Zn, 6He+209Bi, 8B+58Ni and 11Be+238U have been calculated. The inclusion of the breakup channel is found to be very essential in the calculations of the fusion reaction for systems involving light halo nuclei especially below the Coulomb barrier Vb. The results of the calculations of Ofus, Dfus and ⟨L⟩ agrees quite well with the corresponding experimental data.

References

K. Riisager, D.V. Fedorov, A.S. Jensen. Quantum halos. Europhys. Lett. 49, 547 (2000). https://doi.org/10.1209/epl/i2000-00180-y

A. Jensen, M. Zhukov. Few-body effects in nuclear halos. Nucl. Phys. A. 693, 411 (2001). https://doi.org/10.1016/S0375-9474(00)00518-2

D. Fedorov, A. Jensen, K. Riisager. General properties of halos. Phys. Lett. B 312, 1 (1993). https://doi.org/10.1016/0370-2693(93)90476-X

A. Jensen, K. Riisager. Towards necessary and sufficient conditions for halo occurrence. Phys. Lett. B 480, 39 (2000). https://doi.org/10.1016/S0370-2693(00)00413-5

A.W.K. Alder. Electromagnetic Excitations (North-Holland, 1975).

M. Dasgupta, D.J. Hinde, R.D. Butt, R.M. Anjos, A.C. Berriman, N. Carlin, P.R.S. Gomes, C.R. Morton, J.O. Newton, A. Szanto de Toledo, K. Hagino. Fusion versus breakup: Observation of large fusion suppression for 9Be + 208Pb. Phys. Rev. Lett. 82, 1395 (1999). https://doi.org/10.1103/PhysRevLett.82.1395

M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini. Measuring barriers to fusion. Annu. Rev. Nucl. Part. Sci. 48, 401 (1998). https://doi.org/10.1146/annurev.nucl.48.1.401

A. Diaz-Torres, I. J. Thompson, C. Beck. How does breakup influence the total fusion of 6,7Li at the Coulomb barrier. Phys. Rev. C. 68, 044607 (2003). https://doi.org/10.1103/PhysRevC.68.044607

F.A. Majeed, Y.A. Abdul-Hussien. Semiclassical treatment of fusion and breakup processes of 6;8He halo nuclei. J. Theor. Appl. Phys. 10, 107 (2016). https://doi.org/10.1007/s40094-016-0207-y

F.A.Majeed, R.S. Hamodi, F.M. Hussian. Effect of coupled channels on semiclassical and quantum mechanical calculations for heavy ion fusion reactions. J. Comp. and Theor. Nanosci. 14, 2242 (2017). https://doi.org/10.1166/jctn.2017.6816

F.A. Majeed. The role of the breakup channel on the fusion reaction of light and weakly bound nuclei. Int. J. Nucl. Energ. Sci. Tech. 11, 218 (2017). https://doi.org/10.1504/IJNEST.2017.088068

A. Palumbo. a-Capture and a-Elastic Scattering on P-Nuclei to Probe the Hauser–Feshbach Framework. PhD thesis (Notre Dame Indiana, 2009).

S.S. Wong. Introductory Nuclear Physics (Wiley, 2008).

D. Ferry. Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers (Institute of Physics Publ., 2001). https://doi.org/10.1201/9781420033625

D.J. Griffiths. Quantum Mechanics (Institute of Physics Publishing., 2001).

M.F.G. Auletta, G. Parisi. Quantum Mechanics (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9780511813955

S.V.S. Sastry, S. Santra. Structure information from fusion barriers. Pra. J. Phys. 54, 813 (2000). https://doi.org/10.1007/s12043-000-0177-z

J.D. Bierman, P.Chan, J.F. Liang, M.P. Kelly, A.A. Sonzogni, R. Vandenbosch. Experimental fusion barrier distributions reflecting projectile octupole state coupling to prolate and oblate target nuclei. Phys. Rev. Lett. 76, 1587 (1996). https://doi.org/10.1103/PhysRevLett.76.1587

R.C. Lemmon, J.R. Leigh, J.X. Wei, C.R. Morton, D.J. Hinde, J.O. Newton, J.C. Mein, M. Dasgupta, N. Rowley. Strong dependence of sub-barrier fusion on the nuclear hexadecapole deformation. Phys. Lett. B 316, 32 (1993). https://doi.org/10.1016/0370-2693(93)90653-Y

D.L. Hill, J.A.Wheeler. Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102 (1953). https://doi.org/10.1103/PhysRev.89.1102

C.Y. Wong. Interaction barrier in charged-particle nuclear reactions. Rev. Lett. 31, 766 (1973). https://doi.org/10.1103/PhysRevLett.31.766

N. Rowley, G. Satchler, P. Stelson. On the "distribution of barriers" interpretation of heavy-ion fusion. Phys. Lett. B 254, 25 (1991). https://doi.org/10.1016/0370-2693(91)90389-8

N. Takigawa, T. Masamoto, T. Takehiz, T. Rumin. Heavy ion fusion reactions and tunneling nuclear microscope. Jour. Kor. Phys. Soci. 43, 91 (2003).

K. Hagino, N. Takigawa. Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061 (2012). https://doi.org/10.1143/PTP.128.1061

A.B. Balantekin, N. Takigawa. Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77 (1998). https://doi.org/10.1103/RevModPhys.70.77

J.X. Wei, J.R. Leigh, D.J. Hinde, J.O. Newton, R.C. Lemmon, S. Elfstrom, J.X. Chen, N. Rowley. Experimental determination of the fusion-barrier distribution for the 154Sm+16O reaction. Phys. Rev. Lett. 67, 3368 (1991). https://doi.org/10.1103/PhysRevLett.67.3368

V.A. Di Pietro, P. Figuera, M. Fisichella, F. Amorini, C. Angulo, G. Cardella, E. Casarejos, M. Lattuada, M. Milin, A. Musumarra, M. Papa, M.G. Pellegriti, R. Raabe, F. Rizzo, N. Skukan, D. Torresi, M. Zadro. Fusion and direct reactions for the system 6He+64Zn at and below the Coulomb barrier Phys. Rev. C 84, 064604 (2011). https://doi.org/10.1103/PhysRevC.84.064604

J.J. Kolata, V. Guimar?aes, D. Peterson, P. Santi, R.White-Stevens, P.A. DeYoung, G.F. Peaslee, B. Hughey, B. Atalla, M. Kern, P.L. Jolivette, J.A. Zimmerman, M.Y. Lee, F.D. Becchetti, E.F. Aguilera, E. Martinez-Quiroz, J.D. Hinnefeld. Sub-barrier fusion of 6He with 209Bi. Phys. Rev. Lett. 81, 4580 (1998). https://doi.org/10.1103/PhysRevLett.81.4580

E.F. Aguilera, P. Amador-Valenzuela, E. Martinez-Quiroz, J. Fern?andez-Arn?aiz, J.J. Kolata, V. Guimar?aes. Above-barrier fusion enhancement of proton-halo systems. Phys. Rev. C 93, 034613 (2016). https://doi.org/10.1103/PhysRevC.93.034613

V. Fekou-Youmbi, J.L. Sida, N. Alamanos, F. Auger, D. Bazin, C. Borcea, C. Cabot, A. Cunsolo, A. Foti, A. Gillibert, A. L?epine, M. Lewitowicz, R. Liguori-Neto, W. Mittig, E. Pollacco, P. Roussel-Chomaz, C. Volant, Y.Y. Feng. Sub-Coulomb fusion with halo nuclei. Nucl. Phys. A 583, 811 (1995). https://doi.org/10.1016/0375-9474(94)00764-E

Downloads

Published

2019-01-30

How to Cite

Majeed, F. A., & Mahdi, F. A. (2019). Quantum Mechanical Calculations of a Fusion Reaction for Some Selected Halo Systems. Ukrainian Journal of Physics, 64(1), 11. https://doi.org/10.15407/ujpe64.1.11

Issue

Section

General physics