Fabrication and Characterization of Sm3+ Doped Zinc Barium Borate Glasses
DOI:
https://doi.org/10.15407/ujpe63.7.608Keywords:
zinc-barium-borate glasses, photoluminescence, Sm3 ion, Judd–Ofelt analysis, emission cross-sectionAbstract
Zinc-barium-borate glasses with the composition (60 − x)B2O3–10ZnO–30BaO–xSm2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) doped with Sm3+ ions have been prepared, and their physical and optical properties are investigated. The photoluminescence spectra recorded under the 403-nm excitation exhibited the emission bands at 564, 600, 647, and 710 nm corresponding to the transition 4 G5/2 →6 Hj (j = 5/2, 7/2, 9/2, 11/2), respectively. Judd–Ofelt intensity parameters (Ωl, l = 2, 4 and 6) have been evaluated, and the radiative transition probabilities, emission cross-section, and branching ratios for the excited levels of Sm3+ ions
are predicted. The lifetime of the 4 G5/2 level is found to decrease with an increase in the Sm3+ ion concentration.
References
<li> A. Kitai. Luminescent Materials and Applications (Wiley, 2008).
<a href="https://doi.org/10.1002/9780470985687">https://doi.org/10.1002/9780470985687</a>
</li>
<li>Ch. S. Rao, C.K. Jayasankar. Spectroscopic and radiative properties of Sm3+-doped K–Mg–Al phosphate glasses. Opt. Commun. 286, 204 (2013).
<a href="https://doi.org/10.1016/j.optcom.2012.08.042">https://doi.org/10.1016/j.optcom.2012.08.042</a>
</li>
<li>S. Shanmuga Sundari, K. Marimuthu, M. Sivraman, S. Surendra Babu. Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses. J. Lumin. 130, 1313 (2010).
<a href="https://doi.org/10.1016/j.jlumin.2010.02.046">https://doi.org/10.1016/j.jlumin.2010.02.046</a>
</li>
<li>A. Patra, D. Kundu, D. Gunguli. A study of the structural evolution of the sol-gel derived Sm3+-doped silica glass. Mater. Lett. 32, 43 (1997).
<a href="https://doi.org/10.1016/S0167-577X(97)00005-0">https://doi.org/10.1016/S0167-577X(97)00005-0</a>
</li>
<li>R.S. Kaundal, S. Kaur, N. Singh, K.J. Singh. Investigation of structural properties of lead strontium borate glasses for gamma-ray shielding applications. J. Phys. Chem. Solids 71, 1191 (2010).
<a href="https://doi.org/10.1016/j.jpcs.2010.04.016">https://doi.org/10.1016/j.jpcs.2010.04.016</a>
</li>
<li>B. Bhatia, V. Parihar, S. Singh, A.S. Verma. Spectroscopic properties of Pr3+ in lithium bismuth borate glasses. Am. J. Condens. Matter. Phys. 3, 80 (2013).
</li>
<li>H.A. El-Batal, A.M. Abdelghany, N.A. Ghoneim, F.H. El-Batal. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 534 (2014).
<a href="https://doi.org/10.1016/j.saa.2014.06.044">https://doi.org/10.1016/j.saa.2014.06.044</a>
</li>
<li>A.M. Abdelghany, A.H. Hammad. Impact of vanadium ions in barium borate glass. Spectrochim. Acta Part A. Mol. Bimol. Spectrosc. 137, 39 (2015).
<a href="https://doi.org/10.1016/j.saa.2014.08.012">https://doi.org/10.1016/j.saa.2014.08.012</a>
</li>
<li>D.D. Ramteke, Vijay Kumar, H.C. Swart. Spectroscopic studies of Sm3+/Dy3+ co-doped lithium boro-silicate glasses. J. Non-Cryst. Solids 438, 49 (2016).
<a href="https://doi.org/10.1016/j.jnoncrysol.2016.02.010">https://doi.org/10.1016/j.jnoncrysol.2016.02.010</a>
</li>
<li> D.D. Ramteke, H.C. Swart, R.S. Gedam. Spectroscopic properties of Pr 3+ ions embedded in lithium borate glasses. Phys. B Condens. Matter 480, 111 (2016).
</li>
<li> C.R. Kesavulu, C.K. Jayasankar. Spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. J. Lumin. 132, 2802 (2012).
<a href="https://doi.org/10.1016/j.jlumin.2012.05.031">https://doi.org/10.1016/j.jlumin.2012.05.031</a>
</li>
<li> A. Mohan Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L. Rama Moorthy. Absorption and emission spectral studies of Sm3+-doped lead tungstate tellurite glasses. J. Alloy. Compd. 509, 4743 (2011).
<a href="https://doi.org/10.1016/j.jallcom.2011.01.136">https://doi.org/10.1016/j.jallcom.2011.01.136</a>
</li>
<li> B.R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).
<a href="https://doi.org/10.1103/PhysRev.127.750">https://doi.org/10.1103/PhysRev.127.750</a>
</li>
<li> G.S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).
<a href="https://doi.org/10.1063/1.1701366">https://doi.org/10.1063/1.1701366</a>
</li>
<li> M. Jayasimhadri, L.R.Moorthy, S.A. Saleem,R.V.S.S.N.Ravikumar. Spectroscopic characteristics of Sm3+-doped alkali fluorophosphate glasses. Spectrochim. Acta A 64, 939 (2006).
<a href="https://doi.org/10.1016/j.saa.2005.09.001">https://doi.org/10.1016/j.saa.2005.09.001</a>
</li>
<li> W.T. Carnall, H. Crosswhite, H.M. Crosswhite. Energy level structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory. Report ANL-78-XX-95.
</li>
<li> O. Ravi, C. Madhukar Reddy, L. Monoj, B. Deva Prasad Raju. Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses J. Mol. Struct. 1029, 53 (2012).
<a href="https://doi.org/10.1016/j.molstruc.2012.06.059">https://doi.org/10.1016/j.molstruc.2012.06.059</a>
</li>
<li> M.B. Reddy, S. Sailaja, P. Giridhar, C.N. Raju, B.S. Reddy. Spectroscopic investigations of Sm3+ ions doped B2O3–Bi2O3–ZnO–Li2O glasses. Ferroelectr. Lett. 38, 40 (2011).
<a href="https://doi.org/10.1080/07315171.2011.570179">https://doi.org/10.1080/07315171.2011.570179</a>
</li>
<li> A.A. Ali. Optical properties of Sm3+-doped. CaF2 bismuth borate glasses. J. Lumin. 129, 1314 (2009).
<a href="https://doi.org/10.1016/j.jlumin.2009.06.017">https://doi.org/10.1016/j.jlumin.2009.06.017</a>
</li>
<li> D. Umamaheswari, B.C. Jamalaiah, T. Sasikala, L. II-Gon Kim, Rama Moorthy. Photoluminescence properties of Sm3+-doped SFB glasses for efficient visible lasers. J. Non-Cryst. Solids 358, 782 (2012).
<a href="https://doi.org/10.1016/j.jnoncrysol.2011.12.023">https://doi.org/10.1016/j.jnoncrysol.2011.12.023</a>
</li>
<li> A. Agarwal, I. Pal, S. Singhi, M.P. Aggarwal. Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses Opt. Mater. 32, 339 (2009).
<a href="https://doi.org/10.1016/j.optmat.2009.08.012">https://doi.org/10.1016/j.optmat.2009.08.012</a>
</li>
<li> Y.C. Ratnakaram, N.D. Thirpathi, R.P.S. Chakaradhar. Spectral studies of Sm3+ and Dy3+ doped lithium cesium mixed alkali borate glasses J. Non-Cryst. Solids 352, 3914 (2006).
<a href="https://doi.org/10.1016/j.jnoncrysol.2006.06.008">https://doi.org/10.1016/j.jnoncrysol.2006.06.008</a>
</li>
<li> Phan Van Do, V.u. Phi Tuyen, Vu Xuan Quang, Nguyen Trong Thanh, Vu Thi Thai Ha, Nicholas M. Khaidukov, Yong-Ill Lee, B.T. Huy. Judd–Ofelt analysis of spectroscopic properties of Sm3+ ions in K2YF5 crystal. J. Alloys Compd. 520, 262 (2012).
<a href="https://doi.org/10.1016/j.jallcom.2012.01.037">https://doi.org/10.1016/j.jallcom.2012.01.037</a>
</li>
<li> T. Suhasini, J. Suresh Kumar, T. Sasikala, K. Jang, H.S. Lee, M. Jayasimhadri,J.H. Jeong, S.S. Yi, L.R. Moorthy. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses. Opt. Mater. 31, 1167 (2009).
<a href="https://doi.org/10.1016/j.optmat.2008.12.008">https://doi.org/10.1016/j.optmat.2008.12.008</a>
</li>
<li> R.G. Abhilash Kumar, Satoshi Hata, Ken-ichiIkeda, K.G. Gopchandran. Influence of metal ion concentration in the glycol mediated synthesis of Gd2O3 :Eu3+ nanophosphor. Ceramics Intern. 40, 2915 (2014).
<a href="https://doi.org/10.1016/j.ceramint.2013.10.020">https://doi.org/10.1016/j.ceramint.2013.10.020</a>
</li>
<li> G. Vimal, P. Mani Kamal, P.R. Biju, Joseph Cyriac, N.V. Unnikrishnan, M.A. Ittyachen. Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals. Spectrochim. Acta A: Molec. Biomolec. Spectrosc. 122, 624 (2014).
<a href="https://doi.org/10.1016/j.saa.2013.11.080">https://doi.org/10.1016/j.saa.2013.11.080</a>
</li>
<li> P.K. Kaiser. ?????? Res. Meth. Instrum. 6 (5) 473 (1974).
<a href="https://doi.org/10.3758/BF03201066">https://doi.org/10.3758/BF03201066</a>
</li>
<li> G. Lakshminarayana, Rong Yang, Mengfei Mao, Jianrong Qiu. Spectral analysis of RE3+ (RE = Sm, Dy, and Tm): P2O5–Al2O3–Na2O glasses. Opt. Mater. 31, 1506 (2009).
<a href="https://doi.org/10.1016/j.optmat.2009.02.010">https://doi.org/10.1016/j.optmat.2009.02.010</a>
</li>
<li> N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim, J. Kaewkhao. Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses. J. Lumin. 181, 382 (2017).
<a href="https://doi.org/10.1016/j.jlumin.2016.09.050">https://doi.org/10.1016/j.jlumin.2016.09.050</a>
</li>
<li> V. Himamaheswara Rao, P. Syam Prasad, M. Mohan Babu, P. Venkateswara Rao, Lu’?s F. Santos, G. Naga Raju, N. Veeraiah. Luminescence properties of Sm3+ ions doped heavy metal oxide tellurite-tungstate-antimonate glasses. Ceramics Inter. 43, 16467 (2017).
<a href="https://doi.org/10.1016/j.ceramint.2017.09.028">https://doi.org/10.1016/j.ceramint.2017.09.028</a>
</li>
<li> A.S. Rao Nisha Deopa. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Opt. Mater. 72, 31 (2017).
<a href="https://doi.org/10.1016/j.optmat.2017.04.067">https://doi.org/10.1016/j.optmat.2017.04.067</a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.