Fabrication and Characterization of Sm3+ Doped Zinc Barium Borate Glasses

  • Y. Yamsuk Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • P. Yasaka Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • N. Sangwaranatee Faculty of Science and Technology, Suan Sunandha University
  • J. Keawkao Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University

Abstract

Zinc-barium-borate glasses with the composition (60 − x)B2O3–10ZnO–30BaO–xSm2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) doped with Sm3+ ions have been prepared, and their physical and optical properties are investigated. The photoluminescence spectra recorded under the 403-nm excitation exhibited the emission bands at 564, 600, 647, and 710 nm corresponding to the transition 4 G5/2 →6 Hj (j = 5/2, 7/2, 9/2, 11/2), respectively. Judd–Ofelt intensity parameters (Ωl, l = 2, 4 and 6) have been evaluated, and the radiative transition probabilities, emission cross-section, and branching ratios for the excited levels of Sm3+ ions
are predicted. The lifetime of the 4 G5/2 level is found to decrease with an increase in the Sm3+ ion concentration.

Keywords zinc-barium-borate glasses, photoluminescence, Sm3 ion, Judd–Ofelt analysis, emission cross-section

References


  1. A. Kitai. Luminescent Materials and Applications (Wiley, 2008).
    https://doi.org/10.1002/9780470985687

  2. Ch. S. Rao, C.K. Jayasankar. Spectroscopic and radiative properties of Sm3+-doped K–Mg–Al phosphate glasses. Opt. Commun. 286, 204 (2013).
    https://doi.org/10.1016/j.optcom.2012.08.042

  3. S. Shanmuga Sundari, K. Marimuthu, M. Sivraman, S. Surendra Babu. Composition dependent structural and optical properties of Sm3+-doped sodium borate and sodium fluoroborate glasses. J. Lumin. 130, 1313 (2010).
    https://doi.org/10.1016/j.jlumin.2010.02.046

  4. A. Patra, D. Kundu, D. Gunguli. A study of the structural evolution of the sol-gel derived Sm3+-doped silica glass. Mater. Lett. 32, 43 (1997).
    https://doi.org/10.1016/S0167-577X(97)00005-0

  5. R.S. Kaundal, S. Kaur, N. Singh, K.J. Singh. Investigation of structural properties of lead strontium borate glasses for gamma-ray shielding applications. J. Phys. Chem. Solids 71, 1191 (2010).
    https://doi.org/10.1016/j.jpcs.2010.04.016

  6. B. Bhatia, V. Parihar, S. Singh, A.S. Verma. Spectroscopic properties of Pr3+ in lithium bismuth borate glasses. Am. J. Condens. Matter. Phys. 3, 80 (2013).

  7. H.A. El-Batal, A.M. Abdelghany, N.A. Ghoneim, F.H. El-Batal. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 133, 534 (2014).
    https://doi.org/10.1016/j.saa.2014.06.044

  8. A.M. Abdelghany, A.H. Hammad. Impact of vanadium ions in barium borate glass. Spectrochim. Acta Part A. Mol. Bimol. Spectrosc. 137, 39 (2015).
    https://doi.org/10.1016/j.saa.2014.08.012

  9. D.D. Ramteke, Vijay Kumar, H.C. Swart. Spectroscopic studies of Sm3+/Dy3+ co-doped lithium boro-silicate glasses. J. Non-Cryst. Solids 438, 49 (2016).
    https://doi.org/10.1016/j.jnoncrysol.2016.02.010

  10. D.D. Ramteke, H.C. Swart, R.S. Gedam. Spectroscopic properties of Pr 3+ ions embedded in lithium borate glasses. Phys. B Condens. Matter 480, 111 (2016).

  11. C.R. Kesavulu, C.K. Jayasankar. Spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. J. Lumin. 132, 2802 (2012).
    https://doi.org/10.1016/j.jlumin.2012.05.031

  12. A. Mohan Babu, B.C. Jamalaiah, T. Sasikala, S.A. Saleem, L. Rama Moorthy. Absorption and emission spectral studies of Sm3+-doped lead tungstate tellurite glasses. J. Alloy. Compd. 509, 4743 (2011).
    https://doi.org/10.1016/j.jallcom.2011.01.136

  13. B.R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).
    https://doi.org/10.1103/PhysRev.127.750

  14. G.S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).
    https://doi.org/10.1063/1.1701366

  15. M. Jayasimhadri, L.R.Moorthy, S.A. Saleem,R.V.S.S.N.Ravikumar. Spectroscopic characteristics of Sm3+-doped alkali fluorophosphate glasses. Spectrochim. Acta A 64, 939 (2006).
    https://doi.org/10.1016/j.saa.2005.09.001

  16. W.T. Carnall, H. Crosswhite, H.M. Crosswhite. Energy level structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory. Report ANL-78-XX-95.

  17. O. Ravi, C. Madhukar Reddy, L. Monoj, B. Deva Prasad Raju. Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses J. Mol. Struct. 1029, 53 (2012).
    https://doi.org/10.1016/j.molstruc.2012.06.059

  18. M.B. Reddy, S. Sailaja, P. Giridhar, C.N. Raju, B.S. Reddy. Spectroscopic investigations of Sm3+ ions doped B2O3–Bi2O3–ZnO–Li2O glasses. Ferroelectr. Lett. 38, 40 (2011).
    https://doi.org/10.1080/07315171.2011.570179

  19. A.A. Ali. Optical properties of Sm3+-doped. CaF2 bismuth borate glasses. J. Lumin. 129, 1314 (2009).
    https://doi.org/10.1016/j.jlumin.2009.06.017

  20. D. Umamaheswari, B.C. Jamalaiah, T. Sasikala, L. II-Gon Kim, Rama Moorthy. Photoluminescence properties of Sm3+-doped SFB glasses for efficient visible lasers. J. Non-Cryst. Solids 358, 782 (2012).
    https://doi.org/10.1016/j.jnoncrysol.2011.12.023

  21. A. Agarwal, I. Pal, S. Singhi, M.P. Aggarwal. Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses Opt. Mater. 32, 339 (2009).
    https://doi.org/10.1016/j.optmat.2009.08.012

  22. Y.C. Ratnakaram, N.D. Thirpathi, R.P.S. Chakaradhar. Spectral studies of Sm3+ and Dy3+ doped lithium cesium mixed alkali borate glasses J. Non-Cryst. Solids 352, 3914 (2006).
    https://doi.org/10.1016/j.jnoncrysol.2006.06.008

  23. Phan Van Do, V.u. Phi Tuyen, Vu Xuan Quang, Nguyen Trong Thanh, Vu Thi Thai Ha, Nicholas M. Khaidukov, Yong-Ill Lee, B.T. Huy. Judd–Ofelt analysis of spectroscopic properties of Sm3+ ions in K2YF5 crystal. J. Alloys Compd. 520, 262 (2012).
    https://doi.org/10.1016/j.jallcom.2012.01.037

  24. T. Suhasini, J. Suresh Kumar, T. Sasikala, K. Jang, H.S. Lee, M. Jayasimhadri,J.H. Jeong, S.S. Yi, L.R. Moorthy. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses. Opt. Mater. 31, 1167 (2009).
    https://doi.org/10.1016/j.optmat.2008.12.008

  25. R.G. Abhilash Kumar, Satoshi Hata, Ken-ichiIkeda, K.G. Gopchandran. Influence of metal ion concentration in the glycol mediated synthesis of Gd2O3 :Eu3+ nanophosphor. Ceramics Intern. 40, 2915 (2014).
    https://doi.org/10.1016/j.ceramint.2013.10.020

  26. G. Vimal, P. Mani Kamal, P.R. Biju, Joseph Cyriac, N.V. Unnikrishnan, M.A. Ittyachen. Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals. Spectrochim. Acta A: Molec. Biomolec. Spectrosc. 122, 624 (2014).
    https://doi.org/10.1016/j.saa.2013.11.080

  27. P.K. Kaiser. ?????? Res. Meth. Instrum. 6 (5) 473 (1974).
    https://doi.org/10.3758/BF03201066

  28. G. Lakshminarayana, Rong Yang, Mengfei Mao, Jianrong Qiu. Spectral analysis of RE3+ (RE = Sm, Dy, and Tm): P2O5–Al2O3–Na2O glasses. Opt. Mater. 31, 1506 (2009).
    https://doi.org/10.1016/j.optmat.2009.02.010

  29. N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim, J. Kaewkhao. Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses. J. Lumin. 181, 382 (2017).
    https://doi.org/10.1016/j.jlumin.2016.09.050

  30. V. Himamaheswara Rao, P. Syam Prasad, M. Mohan Babu, P. Venkateswara Rao, Lu’?s F. Santos, G. Naga Raju, N. Veeraiah. Luminescence properties of Sm3+ ions doped heavy metal oxide tellurite-tungstate-antimonate glasses. Ceramics Inter. 43, 16467 (2017).
    https://doi.org/10.1016/j.ceramint.2017.09.028

  31. A.S. Rao Nisha Deopa. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Opt. Mater. 72, 31 (2017).
    https://doi.org/10.1016/j.optmat.2017.04.067
Published
2018-08-02
How to Cite
Yamsuk, Y., Yasaka, P., Sangwaranatee, N., & Keawkao, J. (2018). Fabrication and Characterization of Sm3+ Doped Zinc Barium Borate Glasses. Ukrainian Journal Of Physics, 63(7), 608. doi:10.15407/ujpe63.7.608
Section
Optics, atoms and molecules