Electron-Impact Mass Spectrometry of PTCDA Molecules in the Gas Phase

  • A. Zavilopulo Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • O. Shpenik Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
Keywords: ionization, electron impact, fragment ions, energy of appearance

Abstract

The complete and dissociative ionizations of a 3,4,9,10-perylene-tetracarboxylic-dianhydride (C24H8O6, PTCDA) molecule in the gas phase have been studied, by using electron-impact mass spectrometry in an energy interval of 5–90 eV. The molecule is found to decay into the following fragment ions: the perylene core C20H8+ and its half C10H4+, as well as CO+, CO2, and O+ ions. The energy dependences of the cross-sections of the complete ionization of a PTCDA molecule and its fragment ions are analyzed. The energy of the complete ionization of a PTCDA molecule and the energies, at which its fragments appear, are determined. The temperature dependences of the formation of the most intensive fragment ions are measured, by using 80-eV electrons in a temperature interval of 320–500 K.

References

M. Di Ventra, S. Evoy, R. Heflin. Introduction to Nanoscale Science and Technology (Kluwer Academic Publ., 2004).

A.V. Kukhto. Electroluminescence of thin films of organic compounds (A review). Zh. Prikl. Spektrosk. 70, 151 (2003) (in Russian).

R. Gimenez, M. Pinol, J.L. Serrano. Luminescent liquid crystals derived from 9,10-bis(phenylethynyl)anthracene. Chem. Mater. 16, 1377 (2004).

N.N. Dioubankova, A.D. Malakhov, Z.O. Shenkarev, V.A. Korshun. Oligonucleotides containing new fluorescent 1-phenylethynylpyrene and 9,10-bis(phenylethynyl)anthracene uridine-2′-carbamates: Synthesis and properties. Tetrahedron 60, 4617 (2004).

A.D. Malakhov, M.V. Skorobogatyi, I.A. Prokhorenko, S.V. Gontarev, D.T. Kozhich, D.A. Stetsenko, I.A. Stepanova, Z.O. Shenkarev, Y.A. Berlin, V.A. Korshun. 1-(phenylethynyl)pyrene and 9,10 bis(phenylethynyl)anthracene, useful fluorescent dyes for DNA labeling: Excimer formation and energy transfer. Eur. J. Org. Chem. 6, 1298 (2004).

A.L. Moore, D. Gust, T.A. Moore. Bio-inspired constructs for sustainable energy production and use. Actual. Chimique No. 308039, 50 (2007).

K. Kils˚a, A.N. Macpherson, T. Gillbro, J. M˚artensson, Bo Albinsson. Control of electron transfer in supramolecular systems. Spectrochim. Acta A 571, 2213 (2001).

G. Mallard, P.J. Linstrom. NIST Standard Reference Database, Vol. 69 (2000) [http://www.webbook.nist.gov].

L. Romanova, A. Zavilopulo, A. Kukhta, I. Kukhta. Dissociative ionization of 1,4-bis(2,5-phenyloxazolyl) benzene. Int. J. Mass Spectrom. 279, 10 (2009).

A.V. Kukhta, I.N. Kukhta, A.N. Zavilopulo, A.S. Agafonova, O.B. Shpenik. Ionization of 4,4′-bis(phenylethynyl)anthracene by electron impact. Eur. J. Mass Spectrom. 15, 563 (2009).

A.G. Ramonova, I.V. Tvauri, S.A. Khubezhov. Photoinduced decomposition of PTCDA molecules and desorption of their fragments from the films formed on the GaAs(110) surface. Russ. J. Phys. Chem. A 89, 1944 (2015).

N. Dori, M. Menon, L. Kilian. Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory. Phys. Rev. B 73, 195208 (2006).

J. W¨usten, Th. Ertl, S. Lach, Ch. Ziegler. Post deposition purification of PTCDA thin films. Appl. Surf. Sci. 252, 104 (2005).

S.W. Cho, D. Newby, jr., A. DeMasi, K.E. Smith, L.F.J. Piper, T.S. Jones. Determination of the individual atomic site contribution to the electronic structure of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA). J. Chem. Phys. 139, 184711 (2013).

S.A. Pshenichnyuk, A.V. Kukhto, I.N. Kukhto, A.S. Komolov. Spectroscopic states of negative PTCDA ions and their relation to the vacant state density maxima in the conduction band. Zh. Tekhn. Fiz. 81, No. 6, 8 (2011) (in Russian).

A.N. Zavilopulo, E.A. Mironets, A.S. Agafonova. An upgraded ion source for a mass spectrometer. Instrum. Experim. Techn. 55, 65 (2012).

A.T. Lebedev. Mass Spectrometry in Organic Chemistry (BINOM, 2003) (in Russian).

E.V. Tikhonov, Yu.A. Uspenskii, D.R. Khokhlov. Features of the electron structure and photoemission spectra of organic molecular semiconductors: Metal-phthalocyanine molecules and PTCDA. Pis’ma Zh. Eksp. Teor. Fiz. 98, 17 (2013) (in Russian).

S. Sharifzadeh, A Biller, L Kronik, J.B. Neaton. Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles. Phys. Rev. B 85, 125307 (2012).

X. Blase, C. Attaccalite, V. Olevano. First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 83, 115103 (2011).

N. Marom, X. Ren, J.E. Moussa, J.R. Chelikowsky, L. Kronik. Electronic structure of copper phthalocyanine from G0W0 calculations. Phys. Rev. B 84, 195143 (2011).

O.B. Shpenyk, O.V. Pylypchynets, A.M Zavilopulo. Fragmentation of PTCDA molecule by electron impact. Dopov. Nats. Akad. Nauk Ukr. No. 2, 43 (2018).

M. Wewer, F. Stienkemeier. Molecular versus excitonic transitions in PTCDA dimers and oligomers studied by helium nanodroplet isolation spectroscopy. Phys. Rev. B 67, 125201 (2003).

E.F. Lazneva, A.M. Turiev, S.A. Komolov. Laser-stimulated fragmentation and desorption from the organic film surface: 1-derivatives of perylene. Pis’ma Zh. Tekhn. Fiz. 35, 88 (2009) (in Russian).

Published
2019-01-30
How to Cite
Zavilopulo, A., & Shpenik, O. (2019). Electron-Impact Mass Spectrometry of PTCDA Molecules in the Gas Phase. Ukrainian Journal of Physics, 64(1), 3. https://doi.org/10.15407/ujpe64.1.3
Section
Optics, atoms and molecules