Analytical Relations for the Mathematical Expectation and Variance of a Standard Distributed Random Variable Subjected to the √X Transformation

Authors

  • P. Kosobutsky National University “Lviv Polytechnic”

DOI:

https://doi.org/10.15407/ujpe63.3.215

Keywords:

normal distribution, mathematical expectation, variance, random variables, direct quadratic transformation, inverse quadratic transformation, errors

Abstract

The mathematical expectation and the variance have been calculated for random physical variables with the standard distribution function that are transformed by functionally related direct quadratic, X2, and inverse quadratic, √X, dependences.

References

<ol>
<li>G.G. Rode. Propagation of measurement errors and measured means of a physical quantity for the elementary functions cos x and arccos x. Ukr. J. Phys. 61, 345 (2016).
<a href="https://doi.org/10.15407/ujpe61.04.0345">https://doi.org/10.15407/ujpe61.04.0345</a>
</li>
<li>G.G. Rode. Propagation of measurement errors and measured means of a physical quantity for the elementary functions x2 and vx. Ukr. J. Phys. 62, 184 (2017).
<a href="https://doi.org/10.15407/ujpe62.02.0184">https://doi.org/10.15407/ujpe62.02.0184</a>
</li>
<li>A. Hald. Statistical Theory with Engineering Applications (Wiley, 1952).
</li>
<li>J.K. Patel, C.B. Read. Handbook of the Normal Distribution (M. Dekker, 1982).
</li>
<li>A. Papoulis. Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991).
</li>
<li>L. de Broglie. Heisenberg's Uncertainties and the Probabilistic Interpretation of Wave Mechanics: With Critical Notes of the Author (Springer, 1990).
<a href="https://doi.org/10.1007/978-94-009-2127-6">https://doi.org/10.1007/978-94-009-2127-6</a>
</li>
<li>H. Dwight. Tables of Integrals and other Mathematical Data (Macmillan, 1961).
</li>
<li>I.S. Gradshtein, I. M. Ryzhik. Table of Integrals, Series, and Products (Academic, 1980).
</li></ol>

Published

2018-04-20

How to Cite

Kosobutsky, P. (2018). Analytical Relations for the Mathematical Expectation and Variance of a Standard Distributed Random Variable Subjected to the √X Transformation. Ukrainian Journal of Physics, 63(3), 215. https://doi.org/10.15407/ujpe63.3.215

Issue

Section

General physics