Nanocellulose as the Main Composite Component of Electromechanical Sensors

Authors

  • R. M. Balabai Kryvyi Rih State Pedagogical University
  • A. V. Zdeshchyts Kryvyi Rih State Pedagogical University

DOI:

https://doi.org/10.15407/ujpe63.9.828

Keywords:

heterocomposites, nanocellulose, graphene, electron density functional, ab initio pseudopotential

Abstract

Within the methods of the electron density functional and the ab initio pseudopotential, we have obtained the spatial distributions of the density of valence electrons, density of electron states, band gap, valence band, and charge for the cellulose-based model composite structures under mechanical influences, using authors’ program complex. It is determined that the electronic properties of composite structures based on nanocellulose can be controlled, for example, by changing the distance between the layers of composite components that happens during a mechanical compression or stretching.

References

<ol>
<li>S. Ummartyotin, M. Sain. Cellulose Composite for Electronic Devices (Thammasat Univ., 2016).
</li>
<li>HORIZON 2020 – Work Programme 2016–2017. Cross-cutting activities (Focus Areas), PILOTS-05-2017: Paper-based electronics.
</li>
<li>L. Valentini, M. Cardinali, E. Fortunati. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films. J. M. Appl. Phys. Lett. 105, 153111 (2014).
<a href="https://doi.org/10.1063/1.4898601">https://doi.org/10.1063/1.4898601</a>
</li>
<li>Chaoyi Yan et al. Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv. Materials 26 (13), (2014).
<a href="https://doi.org/10.1002/adma.201304742">https://doi.org/10.1002/adma.201304742</a>
</li>
<li>Abdullahil Kafy et al. Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material. Mat. Lett. 159, 20 (2015).
<a href="https://doi.org/10.1016/j.matlet.2015.05.102">https://doi.org/10.1016/j.matlet.2015.05.102</a>
</li>
<li>Ab initio calculation [E-resource] – Mode access to the resource: http://sites.google.com/a/kdpu.edu.ua/calculationphysics.
</li>
<li>N. Yakovkin, P.A. Dowben. The problem of the band gap in lda calculations. Surface Rev. Lett. 14 (3), 481 (2007).
<a href="https://doi.org/10.1142/S0218625X07009499">https://doi.org/10.1142/S0218625X07009499</a>
</li>
<li>E.S. Kryachko, E.V. Lude?na. Density functional theory: Foundations reviewed. Phys. Rep. 544, 123 (2014).
<a href="https://doi.org/10.1016/j.physrep.2014.06.002">https://doi.org/10.1016/j.physrep.2014.06.002</a>
</li>
<li>Claudia D. Simao, Juan S. Reparaz, Markus R. Wagner, et al. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. Carbohydrate Polymers 126, 40 (2015).
<a href="https://doi.org/10.1016/j.carbpol.2015.03.032">https://doi.org/10.1016/j.carbpol.2015.03.032</a>
</li>
</ol>

Downloads

Published

2018-09-24

How to Cite

Balabai, R. M., & Zdeshchyts, A. V. (2018). Nanocellulose as the Main Composite Component of Electromechanical Sensors. Ukrainian Journal of Physics, 63(9), 828. https://doi.org/10.15407/ujpe63.9.828

Issue

Section

Semiconductors and dielectrics