Quantum Dynamics of the Early Universe


  • V. E. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • V. V. Kuzmichev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine




quantum gravity, quantum geometrodynamics, cosmology


Quantum gravity may shed light on the prehistory of the universe. Quantum corrections to gravity affect the dynamics of the expansion of the universe. Their influence is studied on the example of the exactly solvable quantum model. The corrections to the energy density and pressure lead to the emergence of an additional attraction (like dark matter) or repulsion (like dark energy) in the quantum system of the gravitating matter and radiation. The model explains the accelerating expansion (inflation) in the early universe (the domain of comparatively small values of quantum numbers) and a later transition from the decelerating expansion to the accelerating one of the universe (the domain of very large values of quantum numbers) from a single approach. The generation of primordial fluctuations of the energy density at the expense of the change of a sign of the quantum correction to the pressure is discussed.


<li>C. Bennett et al. Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl. 208, 20 (2013), arXiv: 1212.5225 [astro-ph.CO].
<li>G. Hinshaw et al. Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter result. Astrophys. J. Suppl. 208, 19 (2013), arXiv:
<li>P.A.R. Ade et al. Planck 2013 results. I. Overview of products and scientific results. (Planck Collaboration), arXiv: 1303.5062 [astro-ph.CO].
<li>V.E. Kuzmichev, V.V. Kuzmichev. The Big Bang quantum cosmology: The matter-energy production epoch. Acta Phys. Pol. B 39, 979 (2008), arXiv: 0712.0464 [gr-qc].
<li>V.E. Kuzmichev, V.V. Kuzmichev. Accelerating quantum universe. Acta Phys. Pol. B 39, 2003 (2008), arXiv: 0712.0465 [gr-qc].
<li>V.E. Kuzmichev, V.V. Kuzmichev. Quantum universe on extremely small space-time scales. Ukr. J. Phys. 55, 626 (2010).
<li>V.E. Kuzmichev, V.V. Kuzmichev. Quantum corrections to the dynamics of the expanding universe. Acta Phys. Pol. B 44, 2051 (2013), arXiv: 1307.2383 [gr-qc].
<a href="https://doi.org/10.5506/APhysPolB.44.2051">https://doi.org/10.5506/APhysPolB.44.2051</a>
<li>V.E. Kuzmichev, V.V. Kuzmichev. Quantum geometrodynamical description of the dark sector of the matter-energy content of the universe. Ukr. J. Phys. 60, 664 (2015).
<a href="https://doi.org/10.15407/ujpe60.07.0664">https://doi.org/10.15407/ujpe60.07.0664</a>
<li>B.F. Schutz. Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle. Phys. Rev. D 2, 2762 (1970).
<a href="https://doi.org/10.1103/PhysRevD.2.2762">https://doi.org/10.1103/PhysRevD.2.2762</a>
<li> P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, 1964).
<li> J.W. Moffat. Noncommutative quantum gravity. Phys. Lett. B491, 345 (2000), arXiv: hep-th/0007181.
<a href="https://doi.org/10.1016/S0370-2693(00)01064-9">https://doi.org/10.1016/S0370-2693(00)01064-9</a>
<li> A.H. Chamseddine. Gravity in complex hermitian space-time. arXiv: hep-th/0610099.
<li> P.J.E. Peebles, B Ratra. The cosmological constant and Dark energy. Rev. Mod. Phys. 75, 559 (2003), arXiv:astro-ph/0207347.
<a href="https://doi.org/10.1103/RevModPhys.75.559">https://doi.org/10.1103/RevModPhys.75.559</a>
<li> R.R. Caldwell, R. Dave, P.J. Steinhardt. Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998).
<a href="https://doi.org/10.1103/PhysRevLett.80.1582">https://doi.org/10.1103/PhysRevLett.80.1582</a>
<li> J. P. Ostriker, P.J. Steinhardt. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377, 600 (1995).
<a href="https://doi.org/10.1038/377600a0">https://doi.org/10.1038/377600a0</a>
<li> M.S. Turner, G. Steigman, L. Krauss. Flatness of the universe: Reconciling theoretical prejudices with observational data. Phys. Rev. Lett. 52, 2090 (1984).
<a href="https://doi.org/10.1103/PhysRevLett.52.2090">https://doi.org/10.1103/PhysRevLett.52.2090</a>
<li> R.R. Caldwell. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002).
<a href="https://doi.org/10.1016/S0370-2693(02)02589-3">https://doi.org/10.1016/S0370-2693(02)02589-3</a>
<li> R.R. Caldwell, M. Kamionkowski, N.N. Weinberg. Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003), arXiv: astro-ph/0302506.
<a href="https://doi.org/10.1103/PhysRevLett.91.071301">https://doi.org/10.1103/PhysRevLett.91.071301</a>
<li> V.E. Kuzmichev, V.V. Kuzmichev. Semi-classical universe near initial singularity. Acta Phys. Pol. B 40, 2877 (2009), arXiv: 0905.4142 [gr-qc].
<li> J.B. Hartle, S.W. Hawking. Wave function of the Universe. Phys. Rev. D 28, 2960 (1983).
<a href="https://doi.org/10.1103/PhysRevD.28.2960">https://doi.org/10.1103/PhysRevD.28.2960</a>
<li> J. Weyssenhoff, A. Raabe. Relativistic dynamics of spin-fluids and spin-particles. Acta Phys. Pol. 9, 7 (1947).
<li> J. Weyssenhoff, in Max-Planck-Festschrift, edited by B. Kockel, W. Macke, A. Papapetrou (Wissenschaften, 1958).
<li> F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 48, 393 (1976).
<a href="https://doi.org/10.1103/RevModPhys.48.393">https://doi.org/10.1103/RevModPhys.48.393</a>
<li> I.S. Nurgaliev, W.N. Ponomariev. The earliest evolutionary stages of the universe and space-time torsion. Phys. Lett. B 130, 378 (1983).
<a href="https://doi.org/10.1016/0370-2693(83)91526-5">https://doi.org/10.1016/0370-2693(83)91526-5</a>




How to Cite

Kuzmichev, V. E., & Kuzmichev, V. V. (2018). Quantum Dynamics of the Early Universe. Ukrainian Journal of Physics, 63(3), 196. https://doi.org/10.15407/ujpe63.3.196



Fields and elementary particles