Conception of the Kelvin Method on the Basis of a Mechanic-Electrical Transformation

Authors

  • Yu. S. Zharkikh Taras Shevchenko National University of Kyiv, Faculty of Radio Physics, Electronics and Computer Systems
  • S. V. Lysochenko Taras Shevchenko National University of Kyiv, Institute of High Technologies

DOI:

https://doi.org/10.15407/ujpe63.3.269

Keywords:

nondestructive testing, Kelvin method, contact potential difference, surface charge measurements

Abstract

The Kelvin method was based on the concept of the dynamic capacitor recharging by a contact potential difference. The present paper draws attention to the fact that the contact potential difference is not the same physical agent as the electrical potential difference due to the electromotive force. It cannot act as an active electrical voltage and, accordingly, cause the flow of an electric recharging current. The real reason for the appearance of a measured signal is the transformation of the electrode movement mechanical energy into the electric current energy. The current is generated due to periodic changes in the screening conditions of electrostatic charges above the investigated surface. Investigations are made of the method sensitivity to the amount of charges on the sample surface. It is shown that the measurement results are interpreted without invoking the ideas of the work function. Therefore, the method can be
successfully used in studies of organic and biological materials and electrolytes. The proposed mechanism is applicable in both the investigations of macroscopic distributions of the surface
charge and the atomic scale in the Kelvin probe force microscopy.

References

<ol>
<li>J.C. Riviere. Handbook of Surface and Interface Analysis: Methods for Problem-Solving (M. Dekker, 1969).
</li>
<li>Yu.S. Zharkikh, S.V. Lysochenko, S.S. Novikov, O.V. Tretiak. The surface of silicon wafers control after chemical treatments. New technologies 1–2, Nos. 4–5, 18 (2004).
</li>
<li>B. L?agel, I.D. Baikie, U. Petermann. A novel detection system for defects and chemical contamination in semiconductors based upon the scanning Kelvin probe. Surf. Sci. 433, 622 (1999).
<a href="https://doi.org/10.1016/S0039-6028(99)00025-4">https://doi.org/10.1016/S0039-6028(99)00025-4</a>
</li>
<li>G.N. Luo, K.Yamaguchi, T. Terai, M. Yamawaki. Influence of space charge on the performance of the Kelvin probe. Rev. Sci. Instr. 72, 2350 (2001).
<a href="https://doi.org/10.1063/1.1367363">https://doi.org/10.1063/1.1367363</a>
</li>
<li>L. Kronik, Y. Shapira. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1 (1999).
<a href="https://doi.org/10.1016/S0167-5729(99)00002-3">https://doi.org/10.1016/S0167-5729(99)00002-3</a>
</li>
<li>W. Melitz, J. Shen, A.C. Kummel, S. Lee. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1 (2011).
<a href="https://doi.org/10.1016/j.surfrep.2010.10.001">https://doi.org/10.1016/j.surfrep.2010.10.001</a>
</li>
<li>U. Klein, W. Vollman, P.J. Abatti. Contact potential differences measurement: short history and experimental setup for classroom demonstration. IEEE Transactions on Education 46, 338 (2003).
<a href="https://doi.org/10.1109/TE.2003.813896">https://doi.org/10.1109/TE.2003.813896</a>
</li>
<li>Yu.S. Zharkikh, S.V. Lysochenko. Mechanic-electrical transformations in the Kelvin method. Appl. Surf. Sci. 400, 71 (2017).
<a href="https://doi.org/10.1016/j.apsusc.2016.12.085">https://doi.org/10.1016/j.apsusc.2016.12.085</a>
</li>
<li>W.A. Zisman. A new method of measuring contact potential differences in metals. Rev. Sci. Instr. 3 (7), 367 (1932).
<a href="https://doi.org/10.1063/1.1748947">https://doi.org/10.1063/1.1748947</a>
</li>
<li> J. S.W. de Boer, H.J. Krusemeyer, N.C. Burhoven Jaspers. Analysis and improvement of the Kelvin method for measuring differences in work function. Rev. Sci. Instrum. 44, 1003 (1973).
<a href="https://doi.org/10.1063/1.1686287">https://doi.org/10.1063/1.1686287</a>
</li>
<li> B. Ritty, F. Wachtel, R. Manquenouille, F. Ott, J.B. Donnet. Conditions necessary to get meaningful measurements from the Kelvin method. J. Phys. E: Sci. Instrum. 15 310 (1982).
<a href="https://doi.org/10.1088/0022-3735/15/3/017">https://doi.org/10.1088/0022-3735/15/3/017</a>
</li>
<li> Yu.S. Zharkikh, S.V. Lysochenko, O.V. Tretiak. Application of the dynamic capacitor method in semiconductor sensorics. Sensor Electr. Microsyst. Techn. 10, 36 (2013).
<a href="https://doi.org/10.18524/1815-7459.2013.3.109693">https://doi.org/10.18524/1815-7459.2013.3.109693</a>
</li>
<li> D.K. Schroder. Contactless surface charge semiconductor characterization. Mat. Sci. Eng. B 91–92, 196 (2002).
<a href="https://doi.org/10.1016/S0921-5107(01)00993-X">https://doi.org/10.1016/S0921-5107(01)00993-X</a>
</li>
<li> L.N. Abessonova, Yu.S. Zharkikh, A.D. Evdokimov, V.N. Schetkin. Thickness dependence of physical parameters of thermal oxide films on silicon. Microelectronics J. 20 (5), 461 (1991) (in Russian).
</li>
<li> Yu.S. Zharkikh, S.V. Tychkina. UV-stimulated changes in a charge state of the free surface of the Si–SiO2 system. Phys. Techn. Semicond. 24, 2062 (1990) (in Russian).
</li>
<li> Yu.S. Zharkikh, V.V. Piatnitsky, O.V. Tretiak. Effect of the weak form of adsorption on the Si surface charge. Appl. Surf. Sci. 6, 48 (1998).
<a href="https://doi.org/10.1016/S0169-4332(98)00243-8">https://doi.org/10.1016/S0169-4332(98)00243-8</a>
</li>
<li> K. Jakobi. Electronic and Vibrational Properties (Springer, 1994).
</li>
<li> G.W. Gobely, F.G. Allen. Photoelectric properties and work function of cleaved germanium surfaces. Surf. Sci. 2, 402 (1964).
<a href="https://doi.org/10.1016/0039-6028(64)90081-0">https://doi.org/10.1016/0039-6028(64)90081-0</a>
</li>
<li> F.G. Allen, G.W. Gobely. Comparison of the photoelectric properties of cleaved, heated, and sputtered silicon surfaces. J. Appl. Phys. 35, 597 (1964).
<a href="https://doi.org/10.1063/1.1713422">https://doi.org/10.1063/1.1713422</a>
</li>
<li> L. Nony. Principles of Kelvin probe force microscopy and applications. In: Proceedings of the 1st German-French Summer School on noncontact AFM, Porquerolles, France, (2013), p. 1.
</li>
<li> H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M.Ch. Lux-Steiner, N.S. Sariciftci. Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett. 5, 269 (2005).
<a href="https://doi.org/10.1021/nl048176c">https://doi.org/10.1021/nl048176c</a>
</li>
<li> T. Hallam, C.M. Duffy, T. Minakata, M. Ando, H. Sirringhaus. A scanning Kelvin probe study of charge trapping in zone-cast pentacene thin film transistors. Nanotechnology 20, 2 (2008).
</li>
<li> L.M. Liu, G.Y. Li. Electrical characterization of single-walled carbon nanotubes in organic solar cells by Kelvin probe force microscopy. Appl. Phys. Lett. 96, 33 (2010).
<a href="https://doi.org/10.1063/1.3332489">https://doi.org/10.1063/1.3332489</a>
</li>
<li> N.G. Clack, K. Salaita, J.T. Groves. Electrostatic read-out of DNA microarrays with charged microspheres. Nat. Biotechnol. 26, 825 (2008).
<a href="https://doi.org/10.1038/nbt1416">https://doi.org/10.1038/nbt1416</a>
</li>
<li> E. Finot, Y. Leonenko, B. Moores, L. Eng, M. Amrein, Z. Leonenko. Effect of cholesterol on electrostatics in lipidprotein films of a pulmonary surfactant. Langmuir 26, 1929 (2010).
<a href="https://doi.org/10.1021/la904335m">https://doi.org/10.1021/la904335m</a>
</li>
<li> Y. Abbas, X.Zhu, H.L. de Boer, N.B. Tanvir, W. Olthuis, A. van den Berg. Potentiometric measurement with a Kelvin probe: Contactless measurement of chloride ions in aqueous electrolyte. Sens. Actuators, B: Chem. 236, 1126 (2016).
<a href="https://doi.org/10.1016/j.snb.2016.06.150">https://doi.org/10.1016/j.snb.2016.06.150</a>
</li></ol>

Downloads

Published

2018-04-20

How to Cite

Zharkikh, Y. S., & Lysochenko, S. V. (2018). Conception of the Kelvin Method on the Basis of a Mechanic-Electrical Transformation. Ukrainian Journal of Physics, 63(3), 269. https://doi.org/10.15407/ujpe63.3.269

Issue

Section

Surface physics