Approximation of Cluster Integrals for Various Lattice-Gas Models

Authors

  • S. Yu. Ushcats Admiral Makarov National University of Shipbuilding
  • M. V. Ushcats Admiral Makarov National University of Shipbuilding, Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V. M. Sysoev Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. A. Gavryushenko Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe63.12.1066

Keywords:

lattice gas, virial series, cluster integral, hole-particle symmetry, convergence radius, saturation point, boiling point

Abstract

An approximation for cluster integrals of an arbitrary high order has been proposed for the well-known lattice-gas model with an arbitrary geometry and dimensions. The approximation is based on the recently obtained accurate relations for the convergence radius of the virial power series in the activity parameter for the pressure and density. As compared to the previous studies of the symmetric virial expansions for the gaseous and condensed states of a lattice gas, the proposed approximation substantially approaches the pressure values at the saturation and boiling points. For the Lee–Yang lattice-gas model, the approximation considerably improves the convergence to the known exact solution.

References

E. Ising. Contribution to the theory of ferromagnetism. Z. Phys. 31, 253 (1925). https://doi.org/10.1007/BF02980577

C.N. Yang. The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85, 808 (1952). https://doi.org/10.1103/PhysRev.85.808

T.D. Lee, C.N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410 (1952). https://doi.org/10.1103/PhysRev.87.410

M. Kac, G.E. Uhlenbeck, P.C. Hemmer. On the Van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4, 216 (1963). https://doi.org/10.1063/1.1703946

J.L. Lebowitz, O. Penrose. Rigorous treatment of the Van der Waals–Maxwell theory of the liquid-vapor transition. J. Math. Phys. 7, 98 (1966). https://doi.org/10.1063/1.1704821

J.E. Mayer, M.G. Mayer. Statistical Mechanics (Wiley, 1977).

R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975).

R.K. Pathria. Statistical Mechanics (Butterworth-Heinemann, 1997).

M.V. Ushcats. Equation of state beyond the radius of convergence of the virial expansion. Phys. Rev. Lett. 109, 040601 (2012). https://doi.org/10.1103/PhysRevLett.109.040601

M.V. Ushcats. Condensation of the Lennard-Jones fluid on the basis of the Gibbs single-phase approach. J. Chem. Phys. 138, 094309 (2013). https://doi.org/10.1063/1.4793407

M.V. Ushcats. Adequacy of the virial equation of state and cluster expansion. Phys. Rev. E 87, 042111 (2013). https://doi.org/10.1103/PhysRevE.87.042111

V.M. Bannur. Virial expansion and condensation with a new generating function. Physica A 419, 675 (2015). https://doi.org/10.1016/j.physa.2014.10.053

M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, V.Y. Bardik, A.N. Alekseev. Statistical theory of condensation – Advances and challenges. J. Mol. Liq. 224, 694 (2016). https://doi.org/10.1016/j.molliq.2016.09.100

M.V. Ushcats, L.A. Bulavin. Evidence for a first-order phase transition at the divergence region of activity expansions. Phys. Rev. E (submitted) (2018). https://doi.org/10.1103/PhysRevE.98.042127

M.V. Ushcats, S.Y. Ushcats, L.A. Bulavin, V.M. Sysoev. Equation of state for all regimes of a fluid: From gas to liquid. Physica A (submitted) (2018).

M.V. Ushcats. High-density equation of state for a lattice gas. Phys. Rev. E 91, 052144 (2015). https://doi.org/10.1103/PhysRevE.91.052144

M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.J. Ushcats. Virial and high-density expansions for the Lee–Yang lattice gas. Phys. Rev. E 94, 012143 (2016). https://doi.org/10.1103/PhysRevE.94.012143

M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.Y. Ushcats. Lattice gas condensation and its relation to the divergence of virial expansions in the powers of activity. Ukr. J. Phys. 62, 533 (2017). https://doi.org/10.15407/ujpe62.06.0533

S.Y. Ushcats, M.V. Ushcats, L.A. Bulavin, O.S. Svechnikova, I.L. Mykheliev. Asymptotics of activity series at the divergence point. Pramana – J. Phys. 91, 31 (2018).

M.V. Ushcats, L.A. Bulavin, V.M. Sysoev, S.Y. Ushcats. Divergence of activity expansions: Is it actually a problem? Phys. Rev. E 96, 062115 (2017). https://doi.org/10.1103/PhysRevE.96.062115

J. Lennard-Jones. On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. Roy. Soc. A 106, 441 (1924). https://doi.org/10.1098/rspa.1924.0081

J. Lennard-Jones. On the determination of molecular fields. I. From the equation of state of a gas. Proc. Roy. Soc. A 106, 463 (1924). https://doi.org/10.1098/rspa.1924.0082

C. Feng, A.J. Schultz, V. Chaudhary, D.A. Kofke. Eighth to sixteenth virial coefficients of the Lennard-Jones model. J. Chem. Phys. 143, 044504 (2015). https://doi.org/10.1063/1.4927339

M.V. Ushcats. Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. J. Chem. Phys. 141, 101103 (2014). https://doi.org/10.1063/1.4895126

A.J. Schultz, D.A. Kofke. Vapor-phase metastability and condensation via the virial equation of state with extrapolated coefficients. Fluid Phase Equilibr. 409, 12 (2016). https://doi.org/10.1016/j.fluid.2015.09.016

J.K. Singh, D. A. Kofke. Mayer sampling: Calculation of cluster integrals using free-energy perturbation methods. Phys. Rev. Lett. 92, 220601 (2004). https://doi.org/10.1103/PhysRevLett.92.220601

M.V. Ushcats. Modification of the Mayer sampling method for the calculation of high-order virial coefficients. Ukr. J. Phys. 59, 737 (2014). https://doi.org/10.15407/ujpe59.07.0737

M.V. Ushcats. Virial coefficients of modified Lennard-Jones potential. Ukr. J. Phys. 59, 172 (2014). https://doi.org/10.15407/ujpe59.02.0172

M.V. Ushcats. Modified Lennard-Jones model: Virial coefficients to the 7th order. J. Chem. Phys. 140, 234309 (2014). https://doi.org/10.1063/1.4882896

M.V. Ushcats, S.Y. Ushcats, A.A. Mochalov. Virial coefficients of Morse potential. Ukr. J. Phys. 61, 160 (2016). https://doi.org/10.15407/ujpe61.02.0160

J. Hadamard. Essai sur l'´etude des fonctions donn’ees par leur d’eveloppement de Taylor. J Math’em. Pures Appl. 8, 101 (1892).

A.M. Ferrenberg, J. Xu, D.P. Landau. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Phys. Rev. E 97, 043301 (2018). https://doi.org/10.1103/PhysRevE.97.043301

Published

2018-12-09

How to Cite

Ushcats, S. Y., Ushcats, M. V., Sysoev, V. M., & Gavryushenko, D. A. (2018). Approximation of Cluster Integrals for Various Lattice-Gas Models. Ukrainian Journal of Physics, 63(12), 1066. https://doi.org/10.15407/ujpe63.12.1066

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 > >>