Spectral and Spatial Features of Radiation Emitted by a Cholesteric Liquid-Crystal Laser
DOI:
https://doi.org/10.15407/ujpe63.4.339Keywords:
cholesteric liquid crystal, planar texture, lasing spectra, spatial mode structureAbstract
Spectral and spatial characteristics of radiation emitted by a laser operating on the Bragg structure arising in cholesteric liquid crystals (CLCs) have been studied, as well as their variations with a change of the planar CLC orientation. A defect in the helical structure of the CLC formed by a ternary mixture of cholesterol viscous esters is revealed at the mutually orthogonal orientations of the CLC director at the substrates. This defect manifests itself as a local dip in the selective reflection band, which agrees with the behavior of the defect mode in the photonic crystal. Such a defect in the helical structure stimulates the selection of longitudinal modes with the indices N = ±1, so that the single-mode lasing regime is realized. A spatial ring structure in the laser radiation is found to arise, when higher longitudinal modes are generated.
References
<li>I.P. Ilchishin, E.A. Tikhonov, V.G. Tishchenko, M.T. Sh-pak. Generation of a tunable radiation by impuritycholesteric liquid crystals.JETP Lett.32, 27 (1980).
</li>
<li>I.P. Ilchishin, A.G. Kleopov, E.A. Tikhonov, M.T. Shpak.Stimulated tunable radiation in an impurity cholestericliquid crystal.Bull. Acad. Sci. USSR. Phys. Ser.45, 13(1981).
</li>
<li>H. Kogelnik, S.V. Shank. Coupled-wave theory of dis-tributed feedback lasers.J. Appl. Phys.43,2327 (1972).
<a href="https://doi.org/10.1063/1.1661499">https://doi.org/10.1063/1.1661499</a>
</li>
<li>N.V. Kukhtarev. Cholesteric liquid crystal laser withdistributed feedback.Sov. J. Quant. Electron.8, 774(1978).
<a href="https://doi.org/10.1070/QE1978v008n06ABEH010397">https://doi.org/10.1070/QE1978v008n06ABEH010397</a>
</li>
<li>E. Yablonovitch. Inhibited spontaneous emission in solidstate physics and electronics.Phys. Rev. Lett.58, 2059(1987).
<a href="https://doi.org/10.1103/PhysRevLett.58.2059">https://doi.org/10.1103/PhysRevLett.58.2059</a>
</li>
<li>S. John. Strong localization of photons in certain disor-dered dielectric superlattices.Phys. Rev. Lett.58, 2486(1987).
<a href="https://doi.org/10.1103/PhysRevLett.58.2486">https://doi.org/10.1103/PhysRevLett.58.2486</a>
</li>
<li>I.P. Ilchishin, E.A. Tikhonov, A.V. Tolmachev, A.P. Fe-doryako, M.T. Shpak, Harmonic distortion of the inducedhelical structure of the nematic liquid crystal detected bythe distributed feedback laser.Mol. Cryst. Liq. Cryst.191,35(1990).
</li>
<li>J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden.The photonic band edge laser: A new approach to gainenhancement.J. Appl. Phys.75, 1896 (1994).
<a href="https://doi.org/10.1063/1.356336">https://doi.org/10.1063/1.356336</a>
</li>
<li>V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genak. Low-threshold lasing at the edge of a photonic stop band incholesteric liquid crystals.Opt. Lett.23, 1707 (1998).
<a href="https://doi.org/10.1364/OL.23.001707">https://doi.org/10.1364/OL.23.001707</a>
</li>
<li> I P. Ilchishin, E.A. Tikhonov. Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models.Progr. Quant. Electron.41, 1 (2015).
<a href="https://doi.org/10.1016/j.pquantelec.2015.02.001">https://doi.org/10.1016/j.pquantelec.2015.02.001</a>
</li>
<li> A.F. Munoz, P. Palffy-Muhoray, B. Taheri. Ultravioletlasing in cholesteric liquid crystals.Opt. Lett.26, 804(2001).
<a href="https://doi.org/10.1364/OL.26.000804">https://doi.org/10.1364/OL.26.000804</a>
</li>
<li> J. Schmidtke, W. Stille, H. Finkelmann, S.T. Kim. Laseremission in a dye doped cholesteric polymer network.Adv.Mater.14, 746 (2002).
<a href="https://doi.org/10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5">https://doi.org/10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5</a>
</li>
<li> L.-J. Chen, J.-D. Lina, C.-R. Lee. An optically stable andtunable quantum dot nanocrystal-embedded cholestericliquid crystal composite laser.J. Mater. Chem. C2, 4388(2014).
<a href="https://doi.org/10.1039/C4TC00128A">https://doi.org/10.1039/C4TC00128A</a>
</li>
<li> A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi,R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez,L. Oriol, M. Pinol. Widely tunable ultraviolet-visible liq-uid crystal laser.App. Phys. Lett.86, 051107 (2005).
<a href="https://doi.org/10.1063/1.1855405">https://doi.org/10.1063/1.1855405</a>
</li>
<li> I.P. Ilchishin. Optimizing energy output and angular diver-gence of a DFB laser with cholesteric liquid crystal.Bull.Russ. Acad. Sci. Phys.60, 494 (1996).
</li>
<li> K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, Sh.H. Chen,K. Schwertz, R.W. Boyd. Enhanced laser performance ofcholesteric liquid crystals doped with oligofluorene dye.J. Opt. Soc. Am.25, 1496 (2008).
<a href="https://doi.org/10.1364/JOSAB.25.001496">https://doi.org/10.1364/JOSAB.25.001496</a>
</li>
<li> H. Coles, S. Morris. Liquid-crystal lasers.Nat. Photonics4, 676 (2010).
<a href="https://doi.org/10.1038/nphoton.2010.184">https://doi.org/10.1038/nphoton.2010.184</a>
</li>
<li> G.E. Nevskaya, S.P. Palto, M.G. Tomilin. Microlasers onliquid crystals.Sov. J. Opt. Techn.77, 13 (2010).
</li>
<li> R. Bartolino, L.M. Blinov. Liquid crystal microlasers (in-troductory notes). InLiquid Crystal Microlasers.Editedby L.M. Blinov, R. Bartolino (Transworld Research Net-work, 2010).
</li>
<li> V.A. Belyakov, S.V. Semenov. Optical defect modes inchiral liquid crystals.J. Exper. Theor. Phys.112, 694(2011).
<a href="https://doi.org/10.1134/S1063776111030022">https://doi.org/10.1134/S1063776111030022</a>
</li>
<li> Yu.V. Denisov, V.A. Kizel, E.P. Sukhenko. Investigationof ordering of the mesophase of cholesteric liquid crystalson basis of their optical parameters.Zh.`Eksp. Teor. Fiz.71, 679 (1976) (in Russian).
</li>
<li> H.P. Preiswerk, M. Lubanski, S. Gnepf, F.K. Kneubuhl.Group theory and realization of a helical distributedfeedback laser.IEEE J. Quant. Electron.QE-19, 1452(1983).
<a href="https://doi.org/10.1109/JQE.1983.1072049">https://doi.org/10.1109/JQE.1983.1072049</a>
</li>
<li> I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Peculiaritiesof the spatial distribution of the lasing of a distributedfeedback laser based on cholesteric liquid crystals.Ukr. J.Phys.33, 10 (1988).
</li>
<li> V.I. Kopp, Z.Q. Zang, A.Z. Genack. Lasing in chiralphotonics structures.Progr. Quant. Electron.27, 369(2003).
<a href="https://doi.org/10.1016/S0079-6727(03)00003-X">https://doi.org/10.1016/S0079-6727(03)00003-X</a>
</li>
<li> M.V. Bondar, O.V. Przhonska, E.A. Tikhonov, N.M. Fe-dotkina. Thermooptics for the doped elastomers.Techn.Phys.56, 2465 (1986).
</li>
<li> I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Damage to theplanar texture of absorbing cholesteric liquid crystals bypulsed laser radiation.Sov. J. Quant. Electron.17,1567(1987).
<a href="https://doi.org/10.1070/QE1987v017n12ABEH011289">https://doi.org/10.1070/QE1987v017n12ABEH011289</a>
</li>
<li> S.M. Arakelyan, Yu.S. Chilingaryan.Nonlinear Optics ofLiquid Crystals(Nauka, 1984) (in Russian).
</li>
<li> B.P. Stoicheff, A. Szabo. Interference rings in ruby beams.Appl. Opt.2, 811 (1963).29. S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).
</li>
<li> S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).
<a href="https://doi.org/10.2478/s11772-006-0044-7">https://doi.org/10.2478/s11772-006-0044-7</a>
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.