Spectral and Spatial Features of Radiation Emitted by a Cholesteric Liquid-Crystal Laser


  • I. P. Ilchyshyn Institute of Physics, Nat. Acad. Sci. of Ukraine
  • E. A. Tikhonov Institute of Physics, Nat. Acad. Sci. of Ukraine
  • T. V. Mykytiuk Institute of Physics, Nat. Acad. Sci. of Ukraine




cholesteric liquid crystal, planar texture, lasing spectra, spatial mode structure


Spectral and spatial characteristics of radiation emitted by a laser operating on the Bragg structure arising in cholesteric liquid crystals (CLCs) have been studied, as well as their variations with a change of the planar CLC orientation. A defect in the helical structure of the CLC formed by a ternary mixture of cholesterol viscous esters is revealed at the mutually orthogonal orientations of the CLC director at the substrates. This defect manifests itself as a local dip in the selective reflection band, which agrees with the behavior of the defect mode in the photonic crystal. Such a defect in the helical structure stimulates the selection of longitudinal modes with the indices N = ±1, so that the single-mode lasing regime is realized. A spatial ring structure in the laser radiation is found to arise, when higher longitudinal modes are generated.


<li>I.P. Ilchishin, E.A. Tikhonov, V.G. Tishchenko, M.T. Sh-pak. Generation of a tunable radiation by impuritycholesteric liquid crystals.JETP Lett.32, 27 (1980).
<li>I.P. Ilchishin, A.G. Kleopov, E.A. Tikhonov, M.T. Shpak.Stimulated tunable radiation in an impurity cholestericliquid crystal.Bull. Acad. Sci. USSR. Phys. Ser.45, 13(1981).
<li>H. Kogelnik, S.V. Shank. Coupled-wave theory of dis-tributed feedback lasers.J. Appl. Phys.43,2327 (1972).
<a href="https://doi.org/10.1063/1.1661499">https://doi.org/10.1063/1.1661499</a>
<li>N.V. Kukhtarev. Cholesteric liquid crystal laser withdistributed feedback.Sov. J. Quant. Electron.8, 774(1978).
<a href="https://doi.org/10.1070/QE1978v008n06ABEH010397">https://doi.org/10.1070/QE1978v008n06ABEH010397</a>
<li>E. Yablonovitch. Inhibited spontaneous emission in solidstate physics and electronics.Phys. Rev. Lett.58, 2059(1987).
<a href="https://doi.org/10.1103/PhysRevLett.58.2059">https://doi.org/10.1103/PhysRevLett.58.2059</a>
<li>S. John. Strong localization of photons in certain disor-dered dielectric superlattices.Phys. Rev. Lett.58, 2486(1987).
<a href="https://doi.org/10.1103/PhysRevLett.58.2486">https://doi.org/10.1103/PhysRevLett.58.2486</a>
<li>I.P. Ilchishin, E.A. Tikhonov, A.V. Tolmachev, A.P. Fe-doryako, M.T. Shpak, Harmonic distortion of the inducedhelical structure of the nematic liquid crystal detected bythe distributed feedback laser.Mol. Cryst. Liq. Cryst.191,35(1990).
<li>J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden.The photonic band edge laser: A new approach to gainenhancement.J. Appl. Phys.75, 1896 (1994).
<a href="https://doi.org/10.1063/1.356336">https://doi.org/10.1063/1.356336</a>
<li>V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genak. Low-threshold lasing at the edge of a photonic stop band incholesteric liquid crystals.Opt. Lett.23, 1707 (1998).
<a href="https://doi.org/10.1364/OL.23.001707">https://doi.org/10.1364/OL.23.001707</a>
<li> I P. Ilchishin, E.A. Tikhonov. Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models.Progr. Quant. Electron.41, 1 (2015).
<a href="https://doi.org/10.1016/j.pquantelec.2015.02.001">https://doi.org/10.1016/j.pquantelec.2015.02.001</a>
<li> A.F. Munoz, P. Palffy-Muhoray, B. Taheri. Ultravioletlasing in cholesteric liquid crystals.Opt. Lett.26, 804(2001).
<a href="https://doi.org/10.1364/OL.26.000804">https://doi.org/10.1364/OL.26.000804</a>
<li> J. Schmidtke, W. Stille, H. Finkelmann, S.T. Kim. Laseremission in a dye doped cholesteric polymer network.Adv.Mater.14, 746 (2002).
<a href="https://doi.org/10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5">https://doi.org/10.1002/1521-4095(20020517)14:10<746::AID-ADMA746>3.0.CO;2-5</a>
<li> L.-J. Chen, J.-D. Lina, C.-R. Lee. An optically stable andtunable quantum dot nanocrystal-embedded cholestericliquid crystal composite laser.J. Mater. Chem. C2, 4388(2014).
<a href="https://doi.org/10.1039/C4TC00128A">https://doi.org/10.1039/C4TC00128A</a>
<li> A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi,R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez,L. Oriol, M. Pinol. Widely tunable ultraviolet-visible liq-uid crystal laser.App. Phys. Lett.86, 051107 (2005).
<a href="https://doi.org/10.1063/1.1855405">https://doi.org/10.1063/1.1855405</a>
<li> I.P. Ilchishin. Optimizing energy output and angular diver-gence of a DFB laser with cholesteric liquid crystal.Bull.Russ. Acad. Sci. Phys.60, 494 (1996).
<li> K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, Sh.H. Chen,K. Schwertz, R.W. Boyd. Enhanced laser performance ofcholesteric liquid crystals doped with oligofluorene dye.J. Opt. Soc. Am.25, 1496 (2008).
<a href="https://doi.org/10.1364/JOSAB.25.001496">https://doi.org/10.1364/JOSAB.25.001496</a>
<li> H. Coles, S. Morris. Liquid-crystal lasers.Nat. Photonics4, 676 (2010).
<a href="https://doi.org/10.1038/nphoton.2010.184">https://doi.org/10.1038/nphoton.2010.184</a>
<li> G.E. Nevskaya, S.P. Palto, M.G. Tomilin. Microlasers onliquid crystals.Sov. J. Opt. Techn.77, 13 (2010).
<li> R. Bartolino, L.M. Blinov. Liquid crystal microlasers (in-troductory notes). InLiquid Crystal Microlasers.Editedby L.M. Blinov, R. Bartolino (Transworld Research Net-work, 2010).
<li> V.A. Belyakov, S.V. Semenov. Optical defect modes inchiral liquid crystals.J. Exper. Theor. Phys.112, 694(2011).
<a href="https://doi.org/10.1134/S1063776111030022">https://doi.org/10.1134/S1063776111030022</a>
<li> Yu.V. Denisov, V.A. Kizel, E.P. Sukhenko. Investigationof ordering of the mesophase of cholesteric liquid crystalson basis of their optical parameters.Zh.`Eksp. Teor. Fiz.71, 679 (1976) (in Russian).
<li> H.P. Preiswerk, M. Lubanski, S. Gnepf, F.K. Kneubuhl.Group theory and realization of a helical distributedfeedback laser.IEEE J. Quant. Electron.QE-19, 1452(1983).
<a href="https://doi.org/10.1109/JQE.1983.1072049">https://doi.org/10.1109/JQE.1983.1072049</a>
<li> I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Peculiaritiesof the spatial distribution of the lasing of a distributedfeedback laser based on cholesteric liquid crystals.Ukr. J.Phys.33, 10 (1988).
<li> V.I. Kopp, Z.Q. Zang, A.Z. Genack. Lasing in chiralphotonics structures.Progr. Quant. Electron.27, 369(2003).
<a href="https://doi.org/10.1016/S0079-6727(03)00003-X">https://doi.org/10.1016/S0079-6727(03)00003-X</a>
<li> M.V. Bondar, O.V. Przhonska, E.A. Tikhonov, N.M. Fe-dotkina. Thermooptics for the doped elastomers.Techn.Phys.56, 2465 (1986).
<li> I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Damage to theplanar texture of absorbing cholesteric liquid crystals bypulsed laser radiation.Sov. J. Quant. Electron.17,1567(1987).
<a href="https://doi.org/10.1070/QE1987v017n12ABEH011289">https://doi.org/10.1070/QE1987v017n12ABEH011289</a>
<li> S.M. Arakelyan, Yu.S. Chilingaryan.Nonlinear Optics ofLiquid Crystals(Nauka, 1984) (in Russian).
<li> B.P. Stoicheff, A. Szabo. Interference rings in ruby beams.Appl. Opt.2, 811 (1963).29. S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).
<li> S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).
<a href="https://doi.org/10.2478/s11772-006-0044-7">https://doi.org/10.2478/s11772-006-0044-7</a>



How to Cite

Ilchyshyn, I. P., Tikhonov, E. A., & Mykytiuk, T. V. (2018). Spectral and Spatial Features of Radiation Emitted by a Cholesteric Liquid-Crystal Laser. Ukrainian Journal of Physics, 63(4), 339. https://doi.org/10.15407/ujpe63.4.339



Liquid crystals and polymers

Most read articles by the same author(s)