Spectral and Spatial Features of Radiation Emitted by a Cholesteric Liquid-Crystal Laser

  • I. P. Ilchyshyn Institute of Physics, Nat. Acad. Sci. of Ukraine
  • E. A. Tikhonov Institute of Physics, Nat. Acad. Sci. of Ukraine
  • T. V. Mykytiuk Institute of Physics, Nat. Acad. Sci. of Ukraine
Keywords: cholesteric liquid crystal, planar texture, lasing spectra, spatial mode structure


Spectral and spatial characteristics of radiation emitted by a laser operating on the Bragg structure arising in cholesteric liquid crystals (CLCs) have been studied, as well as their variations with a change of the planar CLC orientation. A defect in the helical structure of the CLC formed by a ternary mixture of cholesterol viscous esters is revealed at the mutually orthogonal orientations of the CLC director at the substrates. This defect manifests itself as a local dip in the selective reflection band, which agrees with the behavior of the defect mode in the photonic crystal. Such a defect in the helical structure stimulates the selection of longitudinal modes with the indices N = ±1, so that the single-mode lasing regime is realized. A spatial ring structure in the laser radiation is found to arise, when higher longitudinal modes are generated.


  1. I.P. Ilchishin, E.A. Tikhonov, V.G. Tishchenko, M.T. Sh-pak. Generation of a tunable radiation by impuritycholesteric liquid crystals.JETP Lett.32, 27 (1980).

  2. I.P. Ilchishin, A.G. Kleopov, E.A. Tikhonov, M.T. Shpak.Stimulated tunable radiation in an impurity cholestericliquid crystal.Bull. Acad. Sci. USSR. Phys. Ser.45, 13(1981).

  3. H. Kogelnik, S.V. Shank. Coupled-wave theory of dis-tributed feedback lasers.J. Appl. Phys.43,2327 (1972).

  4. N.V. Kukhtarev. Cholesteric liquid crystal laser withdistributed feedback.Sov. J. Quant. Electron.8, 774(1978).

  5. E. Yablonovitch. Inhibited spontaneous emission in solidstate physics and electronics.Phys. Rev. Lett.58, 2059(1987).

  6. S. John. Strong localization of photons in certain disor-dered dielectric superlattices.Phys. Rev. Lett.58, 2486(1987).

  7. I.P. Ilchishin, E.A. Tikhonov, A.V. Tolmachev, A.P. Fe-doryako, M.T. Shpak, Harmonic distortion of the inducedhelical structure of the nematic liquid crystal detected bythe distributed feedback laser.Mol. Cryst. Liq. Cryst.191,35(1990).

  8. J.P. Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden.The photonic band edge laser: A new approach to gainenhancement.J. Appl. Phys.75, 1896 (1994).

  9. V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genak. Low-threshold lasing at the edge of a photonic stop band incholesteric liquid crystals.Opt. Lett.23, 1707 (1998).

  10. I P. Ilchishin, E.A. Tikhonov. Dye-doped cholesteric lasers:Distributed feedback and photonic bandgap lasing models.Progr. Quant. Electron.41, 1 (2015).

  11. A.F. Munoz, P. Palffy-Muhoray, B. Taheri. Ultravioletlasing in cholesteric liquid crystals.Opt. Lett.26, 804(2001).

  12. J. Schmidtke, W. Stille, H. Finkelmann, S.T. Kim. Laseremission in a dye doped cholesteric polymer network.Adv.Mater.14, 746 (2002).

  13. L.-J. Chen, J.-D. Lina, C.-R. Lee. An optically stable andtunable quantum dot nanocrystal-embedded cholestericliquid crystal composite laser.J. Mater. Chem. C2, 4388(2014).

  14. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi,R. Bartolino, G. Cipparrone, A. Mazzulla, R. Gimenez,L. Oriol, M. Pinol. Widely tunable ultraviolet-visible liq-uid crystal laser.App. Phys. Lett.86, 051107 (2005).

  15. I.P. Ilchishin. Optimizing energy output and angular diver-gence of a DFB laser with cholesteric liquid crystal.Bull.Russ. Acad. Sci. Phys.60, 494 (1996).

  16. K. Dolgaleva, S.K.H. Wei, S.G. Lukishova, Sh.H. Chen,K. Schwertz, R.W. Boyd. Enhanced laser performance ofcholesteric liquid crystals doped with oligofluorene dye.J. Opt. Soc. Am.25, 1496 (2008).

  17. H. Coles, S. Morris. Liquid-crystal lasers.Nat. Photonics4, 676 (2010).

  18. G.E. Nevskaya, S.P. Palto, M.G. Tomilin. Microlasers onliquid crystals.Sov. J. Opt. Techn.77, 13 (2010).

  19. R. Bartolino, L.M. Blinov. Liquid crystal microlasers (in-troductory notes). InLiquid Crystal Microlasers.Editedby L.M. Blinov, R. Bartolino (Transworld Research Net-work, 2010).

  20. V.A. Belyakov, S.V. Semenov. Optical defect modes inchiral liquid crystals.J. Exper. Theor. Phys.112, 694(2011).

  21. Yu.V. Denisov, V.A. Kizel, E.P. Sukhenko. Investigationof ordering of the mesophase of cholesteric liquid crystalson basis of their optical parameters.Zh.`Eksp. Teor. Fiz.71, 679 (1976) (in Russian).

  22. H.P. Preiswerk, M. Lubanski, S. Gnepf, F.K. Kneubuhl.Group theory and realization of a helical distributedfeedback laser.IEEE J. Quant. Electron.QE-19, 1452(1983).

  23. I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Peculiaritiesof the spatial distribution of the lasing of a distributedfeedback laser based on cholesteric liquid crystals.Ukr. J.Phys.33, 10 (1988).

  24. V.I. Kopp, Z.Q. Zang, A.Z. Genack. Lasing in chiralphotonics structures.Progr. Quant. Electron.27, 369(2003).

  25. M.V. Bondar, O.V. Przhonska, E.A. Tikhonov, N.M. Fe-dotkina. Thermooptics for the doped elastomers.Techn.Phys.56, 2465 (1986).

  26. I.P. Ilchishin, E.A. Tikhonov, M.T. Shpak. Damage to theplanar texture of absorbing cholesteric liquid crystals bypulsed laser radiation.Sov. J. Quant. Electron.17,1567(1987).

  27. S.M. Arakelyan, Yu.S. Chilingaryan.Nonlinear Optics ofLiquid Crystals(Nauka, 1984) (in Russian).

  28. B.P. Stoicheff, A. Szabo. Interference rings in ruby beams.Appl. Opt.2, 811 (1963).29. S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).

  29. S.P. Palto, N.M. Shtykov, B.A. Umansky, M.I. Barnik,L.M. Blinov. General properties of lasing effect in chiralliquid crystals.Opto-Electron. Rev.14, 323 (2006).
How to Cite
Ilchyshyn, I., Tikhonov, E., & Mykytiuk, T. (2018). Spectral and Spatial Features of Radiation Emitted by a Cholesteric Liquid-Crystal Laser. Ukrainian Journal of Physics, 63(4), 339. https://doi.org/10.15407/ujpe63.4.339
Liquid crystals and polymers