Structural and Dielectric Properties of Ba2+ Substituted Lead-Barium-Titanate Ceramics

Authors

  • P. P. Bardapurkar S.N. Arts, D.J.M. Commerce & B.N.S. Science College
  • S. S. Shewale Ahmednagar College
  • S. A. Arote S.N. Arts, D.J.M. Commerce & B.N.S. Science College
  • N. P. Barde Badrinarayan Barwale Mahavidyalaya

DOI:

https://doi.org/10.15407/ujpe63.6.552

Keywords:

lead titanates, frequency variations, dielectric constant, Curie temperature

Abstract

Owing to a wide range of applications, ferroelectric ceramics have remained the center of attention of researchers over a large period. With this perception, the present article reports the effects of the substitution of Ba2+ in lead titanate (PT) on its structural and electrical properties. X-ray diffractometry was employed for the phase confirmation and to reveal the crystallographic data. It authenticates the single-phase formation with a systematic decrease in the anisotropy. Typical X-ray diffraction data are refined, by using the Rietveld method. The substitution of Ba2+ in PT ceramics has caused a reduction in the ferroelectric Curie temperature and significant changes in dielectric properties.

References

<ol>
<li>O. Mojca, R. Angelika, R. Klaus. Electric field-induced changes of domain structure and properties in La-doped PZT–from ferroelectrics towards relaxors. J. Eur. Ceram. Soc. 36, 2495 (2016).
<a href="https://doi.org/10.1016/j.jeurceramsoc.2016.03.004">https://doi.org/10.1016/j.jeurceramsoc.2016.03.004</a>
</li>
<li>Zhi Ma, Yanan Ma, Zhipeng Chen, Fu Zheng, Hua Gao, Hongfei Liu, Huanming Chen. Modeling of hysteresis loop and its applications in ferroelectric materials, 44 (4), 4338 (2018).
</li>
<li>Bingcheng Luo, Xiaohui Wang, Enke Tian, Hongzhou Song, Haimo Qu, Ziming Cai, Baiwen Li, Longtu Li. Mechanism of ferroelectric properties of (BaCa)(ZrTi)O3 from first principles calculations. (Ceramics International, Available online 2, 2018).
</li>
<li>Xiaomeng Ma, Sanshan Li, Yanyan He, Ting Liu, Yebin Xu. The abnormal increase of tunability in ferroelectric-dielectric composite ceramics and its origin. J. Alloys and Compounds 739, 755 (2018).
<a href="https://doi.org/10.1016/j.jallcom.2017.12.279">https://doi.org/10.1016/j.jallcom.2017.12.279</a>
</li>
<li>Yongbo Yuan, Zhengguo Xiao, Bin Yang, Jinsong Huang. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027 (2014).
<a href="https://doi.org/10.1039/C3TA14188H">https://doi.org/10.1039/C3TA14188H</a>
</li>
<li>Yang Bai. Influence of microstructure features on electrocaloric effect in ferroelectric ceramics. Ceramics International 44 (7), 8263 (2018).
<a href="https://doi.org/10.1016/j.ceramint.2018.02.008">https://doi.org/10.1016/j.ceramint.2018.02.008</a>
</li>
<li>S. Shoarinejad, R. Mohammadi Siahboomi, M. Ghazavi. Theoretical studies of the influence of nanoparticle dopants on the ferroelectric properties of a ferroelectric liquid crystal. J. Molecular Liquids 254, 312 (2018).
<a href="https://doi.org/10.1016/j.molliq.2018.01.013">https://doi.org/10.1016/j.molliq.2018.01.013</a>
</li>
<li>HyunWook Shin, Jong Yeog Son. Asymmetric ferroelectric switching characteristics of ferroelectric poly (vinylidene fluoride-ran-trifluoroethylene) thin films grown on highly oriented pyrolytic graphite substrates. Organic Electronics 51, 458 (2017).
<a href="https://doi.org/10.1016/j.orgel.2017.09.049">https://doi.org/10.1016/j.orgel.2017.09.049</a>
</li>
<li>Ferroelectrics – Applications. Edited by M. Lallart (In-Tech, 2011).
<a href="https://doi.org/10.5772/947">https://doi.org/10.5772/947</a>
</li>
<li> Online resources. http://www.indiastudychannel.com/resources/117961-Ferroelectric-Materials-Theory-Properties-and-applications.aspx, accessed on (27 Aug 2017).
</li>
<li> Online resources. https://www.azom.com/article.aspx?ArticleID=3593#, accessed on (27 Aug 2017).
</li>
<li> Online resources. https://www.electrical4u.com/ferro-electric-materials/, accessed on (27 Aug 2017).
</li>
<li> Dong Hou, Changhao Zhao, A.R. Paterson, Shengtao Li, J.L. Jones. Local structures of perovskite dielectrics and ferroelectrics via pair distribution function analyses. J. Europ. Ceramic Society 38 (4), 971 (2018).
<a href="https://doi.org/10.1016/j.jeurceramsoc.2017.12.003">https://doi.org/10.1016/j.jeurceramsoc.2017.12.003</a>
</li>
<li> T. Shi, G. Li, J. Zhu. Compositional design strategy for high performance ferroelectric oxides with perovskite structure. Ceramics International 43 (3), 2910 (2017).
<a href="https://doi.org/10.1016/j.ceramint.2016.11.085">https://doi.org/10.1016/j.ceramint.2016.11.085</a>
</li>
<li> H. Yurtseven, A. Kiraci. Temperature dependence of the polarization and the dielectric constant near the paraelectric-ferroelectric transitions in BaTiO3. J. Mol. Model 19, 3925 (2013).
<a href="https://doi.org/10.1007/s00894-013-1927-4">https://doi.org/10.1007/s00894-013-1927-4</a>
</li>
<li> J. Rodriguez-Carvajal, T. Roisnel. FullProf.98 and Win-PLOTR: New Windows 95/NT applications for diffraction commission for powder diffraction, international union for crystallography, Newletter No. 20 (May-August) (Summer 1998).
</li>
<li> P.P. Bardapurkar, N.P. Barde, D.P. Thakur, K.M. Jadhav, G.K. Bichile. Effect of Ba2+–Sr2+ co-substitution on the structural and dielectric properties of lead titanate. J. Electroceram 29, 62 (2012).
<a href="https://doi.org/10.1007/s10832-012-9741-4">https://doi.org/10.1007/s10832-012-9741-4</a>
</li>
<li> Wei Hu. Experimental search for high Curie temperature piezoelectric ceramics with combinatorial approaches. Graduate thesis and dissertation (Iowa State University Ames, 2011).
</li>
<li> Online resources, http://nptel.ac.in/courses/113104005/lecture18a/18_2.htm, accessed on (27 Aug 2017).
</li>
<li> Yaru Wang, Yongping Pu, Xin Li, Hanyu Zheng, Ziyan Gao. Evolution from ferroelectric to diffused ferroelectric and relaxor ferroelectric in BaTiO3–BiFeO3 solid solutions. Mater. Chem. Phys. 183, 247 (2016).
<a href="https://doi.org/10.1016/j.matchemphys.2016.08.024">https://doi.org/10.1016/j.matchemphys.2016.08.024</a>
</li>
<li> O.P. Thakur, Chandra Prakash, D.K. Agrawal. Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave. Mater. Sci. Eng. B 96, 221 (2002).
<a href="https://doi.org/10.1016/S0921-5107(02)00159-9">https://doi.org/10.1016/S0921-5107(02)00159-9</a>
</li>
<li> Gupta Vineeta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn. Dielectric properties, ac conductivity and thermal behavior of flux grown cadmium titanate crystals. Mater. Sci. Eng. B 130, 163 (2006).
<a href="https://doi.org/10.1016/j.mseb.2006.03.006">https://doi.org/10.1016/j.mseb.2006.03.006</a>
</li>
<li> K. Singh Amarendra, T.C. Goel, R.G. Mendiratta. Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91, 6626 (2002).
<a href="https://doi.org/10.1063/1.1470256">https://doi.org/10.1063/1.1470256</a>
</li>
<li> R. Balusamy, P. Kumaravel, N.G. Renganathan. Dielectric and electrical properties of lead zirconate titanate. Der Pharma Chemica 7 (10), 175 (2015).
</li>

Downloads

Published

2018-07-12

How to Cite

Bardapurkar, P. P., Shewale, S. S., Arote, S. A., & Barde, N. P. (2018). Structural and Dielectric Properties of Ba2+ Substituted Lead-Barium-Titanate Ceramics. Ukrainian Journal of Physics, 63(6), 552. https://doi.org/10.15407/ujpe63.6.552

Issue

Section

Structure of materials

Most read articles by the same author(s)