Length in a Noncommutative Phase Space

  • Kh. P. Gnatenko Department for Theoretical Physics, Ivan Franko National University of Lviv
  • V. M. Tkachuk Department for Theoretical Physics, Ivan Franko National University of Lviv

Abstract

We study restrictions on the length in a noncommutative phase space caused by noncommutativity. The uncertainty relations for coordinates and momenta are considered, and the lower bound of the length is found. We also consider the eigenvalue problem for the squared length operator and find the expression for the minimal length in the noncommutative phase space.

Keywords noncommutative phase space, minimal length, uncertainty relations

References


  1. N. Seiberg, E. Witten. String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999).

  2. S. Doplicher, K. Fredenhagen, J.E. Roberts. Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994).
    https://doi.org/10.1016/0370-2693(94)90940-7

  3. J. Gamboa, M. Loewe, J.C. Rojas. Noncommutative quantum mechanics. Phys. Rev. D 64, 067901 (2001).
    https://doi.org/10.1103/PhysRevD.64.067901

  4. V.P. Nair, A.P. Polychronakos. Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B 505, 267 (2001).
    https://doi.org/10.1016/S0370-2693(01)00339-2

  5. K. Bolonek, P. Kosinski. On uncertainty relations in noncommutative quantum mechanics. Phys. Lett. B 547, 51 (2002).
    https://doi.org/10.1016/S0370-2693(02)02731-4

  6. C. Duval, P.A. Horvathy. Exotic Galilean symmetry in the noncommutative plane and the Hall effect. J. Phys. A 34, 10097 (2001).
    https://doi.org/10.1088/0305-4470/34/47/314

  7. M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001).
    https://doi.org/10.1103/PhysRevLett.86.2716

  8. T.C. Adorno, M.C. Baldiotti, M. Chaichian, D.M. Gitman, A. Tureanu. Dirac equation in noncommutative space for hydrogen atom. Phys. Lett. B 682, 235 (2009).
    https://doi.org/10.1016/j.physletb.2009.11.003

  9. J.M. Romero, J.D. Vergara. The Kepler problem and noncommutativity. Mod. Phys. Lett. A 18, 1673 (2003).
    https://doi.org/10.1142/S0217732303011472

  10. B. Mirza, M. Dehghani. Noncommutative geometry and classical orbits of particles in a central force potential. Commun. Theor. Phys. 42, 183 (2004).
    https://doi.org/10.1088/0253-6102/42/2/183

  11. O. Bertolami, P. Leal. Aspects of phase-space noncommutative quantum mechanics. Phys. Lett. B 750, 6 (2015).
    https://doi.org/10.1016/j.physletb.2015.08.024

  12. O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina, D. Zappala. Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics. Mod. Phys. Lett. A 21, 795 (2006).
    https://doi.org/10.1142/S0217732306019840

  13. Kh.P. Gnatenko, V.M. Tkachuk. Effect of coordinate noncommutativity on the mass of a particle in a uniform field and the equivalence principle. Mod. Phys. Lett. A 31, 1650026 (2016).
    https://doi.org/10.1142/S0217732316500267

  14. Kh.P. Gnatenko. Estimating the upper bound of the parameter of noncommutativity on the basis of the equivalence principle. J. Phys. Stud. 17, 4001 (2013).

  15. Kh.P. Gnatenko. Physical systems in a space with noncommutativity of coordinates. J. Phys.: Conf. Ser. 670, 012023 (2016).
    https://doi.org/10.1088/1742-6596/670/1/012023

  16. H. Snyder. Quantized space-time. Phys. Rev. 71, 38 (1947).
    https://doi.org/10.1103/PhysRev.71.38

  17. A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 837 (2004).
    https://doi.org/10.1088/0253-6102/41/6/837

  18. Li Kang, Chamoun Nidal. Hydrogen atom spectrum in noncommutative phase space. Chin. Phys. Lett. 23, 1122 (2006).
    https://doi.org/10.1088/0256-307X/23/5/016

  19. S.A. Alavi. Lamb shift and Stark effect in simultaneous space-space and momentum-momentum noncommutative quantum mechanics and O. Mod. Phys. Lett. A 22, 377 (2007).
    https://doi.org/10.1142/S0217732307018579

  20. O. Bertolami, R. Queiroz. Phase-space noncommutativity and the Dirac equation. Phys. Lett. A 375, 4116 (2011).
    https://doi.org/10.1016/j.physleta.2011.09.053

  21. A. Smailagic, E. Spallucci. Isotropic representation of the noncommutative 2D harmonic oscillator. Phys. Rev. D 65, 107701 (2002).
    https://doi.org/10.1103/PhysRevD.65.107701

  22. A. Smailagic, E. Spallucci. Noncommutative 3D harmonic oscillator. J. Phys. A 35, 363 (2002).
    https://doi.org/10.1088/0305-4470/35/26/103

  23. A. Hatzinikitas, I. Smyrnakis. The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002).
    https://doi.org/10.1063/1.1416196

  24. Li Kang, Wang Jianhua, Chen Chiyi. Representation of noncommutative phase space. Mod. Phys. Lett. A 20, 2165 (2005).
    https://doi.org/10.1142/S0217732305017421

  25. C. Acatrinei. Path integral formulation of noncommutative quantum mechanics. J. of High Energy Phys. 9, 007 (2001).

  26. P.R. Giri, P. Roy. The non-commutative oscillator, symmetry and the Landau problem. Eur. Phys. J. C 57, 835 (2008).
    https://doi.org/10.1140/epjc/s10052-008-0705-4

  27. J. Ben Geloun, S. Gangopadhyay, F.G. Scholtz. Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space. EPL 86, 51001 (2009).
    https://doi.org/10.1209/0295-5075/86/51001

  28. O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).
    https://doi.org/10.1103/PhysRevD.72.025010

  29. C. Bastos, O. Bertolami. Berry phase in the gravitational quantum well and the Seiberg–Witten map. Phys. Lett. A 372, 5556 (2008).
    https://doi.org/10.1016/j.physleta.2008.06.073

  30. Kh.P. Gnatenko, V. M. Tkachuk. Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Phys. Lett. A 381, 2463 (2017).
    https://doi.org/10.1016/j.physleta.2017.05.056

  31. J.M. Romero, J.A. Santiago, J.D. Vergara. Note about the quantum of area in a noncommutative space. Phys. Rev. D 68, 067503 (2003).
    https://doi.org/10.1103/PhysRevD.68.067503

  32. A. Kijanka and P. Kosinski. Noncommutative isotropic harmonic oscillator. Phys. Rev. D 70, 127702 (2004).
    https://doi.org/10.1103/PhysRevD.70.127702

  33. Kh.P. Gnatenko, V.M. Tkachuk. Minimal length, area, and volume in a space with noncommutativity of coordinates. J. Phys. Stud. 20, 1001 (2016).

  34. A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 6 (2004).
    https://doi.org/10.1088/0253-6102/41/6/837
Published
2018-03-10
How to Cite
Gnatenko, K., & Tkachuk, V. (2018). Length in a Noncommutative Phase Space. Ukrainian Journal Of Physics, 63(2), 102. doi:10.15407/ujpe63.2.102
Section
General physics