Effective Radii of Macromolecules in Dilute Polyvinyl Alcohol Solutions

Authors

  • O. V. Khorolskyi Poltava V.G. Korolenko National Pedagogical University

DOI:

https://doi.org/10.15407/ujpe63.2.144

Keywords:

polyvinyl alcohol solution, effective radius of macromolecule, dimethyl sulfoxide, Malomuzh–Orlov theory

Abstract

The temperature and concentration dependences of the effective radii of polyvinyl alcohol (PVA) macromolecules have been studied on the basis of experimental data on the viscosity of dilute PVA solutions in dimethyl sulfoxide (DMSO) and water, as well as using the Malomuzh–Orlov theory of shear viscosity in polymer solutions. The temperature dependences of the effective radii of PVA macromolecules in DMSO are shown to be linear in the temperature interval 293÷353 K. At the same time, those dependences are more complicated for aqueous PVA solutions. Namely, the effective radii of macromolecules remain unchanged at relatively low temperatures and PVA concentrations, but they decrease nonlinearly at higher temperatures and concentrations. The concentration dependences of the effective radii of PVA macromolecules in both solvents are found to decrease nonlinearly in the concentration interval 0.3–3 wt.%.

References

<ol><li>H. Munstedt, F.R. Schwarzl. Deformation and Flow of Polymeric Materials (Springer, 2014).
</li>
<li>O.V. Khorolskyi. The nature of viscosity of polyvinyl alcohol solutions in dimethyl sulfoxide and water. Ukr. J. Phys. 62, 858 (2017).
<a href="https://doi.org/10.15407/ujpe62.10.0858">https://doi.org/10.15407/ujpe62.10.0858</a>
</li>
<li>Shao Tang Sun, I. Nishio, G. Swislow, T. Tanaka. The coil–globule transition: radius of gyration of polystyrene in cyclohexane. J. Chem. Phys. 73, 5971 (1980).
<a href="https://doi.org/10.1063/1.440156">https://doi.org/10.1063/1.440156</a>
</li>
<li>J. Sp?ev’a?cek, J. Dybal, L. Starovoytova, A. Zhigunov, Z. Sedl’akov’a. Temperature–induced phase separation and hydration in poly(N–vinylcaprolactam) aqueous solutions: a study by NMR and IR spectroscopy, SAXS, and quantum-chemical calculations. Soft Matter 8, 6110 (2012).
<a href="https://doi.org/10.1039/c2sm25432h">https://doi.org/10.1039/c2sm25432h</a>
</li>
<li>Yijie Lu, Kejin Zhou, Yanwei Ding, Guangzhao Zhang, Chi Wu. Origin of hysteresis observed in association and dissociation of polymer chains in water. Phys. Chem. Chem. Phys. 12, 3188 (2010).
<a href="https://doi.org/10.1039/b918969f">https://doi.org/10.1039/b918969f</a>
</li>
<li>F. Rodriguez-Ropero, N.F.A. van der Vegt. Direct osmolyte–macromolecule interactions confer entropic stability to folded states. J. Phys. Chem. B 118, 7327 (2014).
<a href="https://doi.org/10.1021/jp504065e">https://doi.org/10.1021/jp504065e</a>
</li>
<li>L.A. Bulavin, O.M. Alekseev, L.M. Garkusha, Yu.F. Zabashta, S.Yu. Tkachov. Configuration transitions in aqueuos dextran solutions. Polymern. Zh. 33, 370 (2011) (in Ukrainian).
</li>
<li>M.A. Masuelli. Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect. J. Polym. Biopolym. Phys. Chem. 1, 13 (2013).
</li>
<li>Mowiol Brochure en KSE (Kuraray Specialities Europe KSE GmbH, 2003).
</li>
<li> I.M. Lifshits, A.Yu. Grosberg, A.P. Khokhlov. Bulk interactions in statistical physics of polymer macromolecule. Usp. Fiz. Nauk 127, 353 (1979) (in Russian).
<a href="https://doi.org/10.3367/UFNr.0127.197903a.0353">https://doi.org/10.3367/UFNr.0127.197903a.0353</a>
</li>
<li> N.P. Malomuzh, E.V. Orlov. New version of cell method for determining the suspension viscosity. Kolloidn. Zh. 64, 802 (2002) (in Russian).
</li>
<li> N.P. Malomuzh, E.V. Orlov. Static shear viscosity of a bimodal suspension. Ukr. J. Phys. 50, 618 (2005).
</li>
<li> E.V. Orlov. Shear viscosity of dispersions of particles with liquid shells. Colloid J. 72, 820 (2010).
<a href="https://doi.org/10.1134/S1061933X1006013X">https://doi.org/10.1134/S1061933X1006013X</a>
</li>
<li> D.J.S. Anand Karunakaran, T. Ganesh, M.M. Sylvester, P. Hudge, A.C. Kumbharkhane. Dielectric properties and analysis of H-bonded interaction study in complex systems of binary and ternary mixtures of polyvinyl alcohol with water and DMSO. Fluid Phase Equilibr. 382, 300 (2014).
<a href="https://doi.org/10.1016/j.fluid.2014.09.018">https://doi.org/10.1016/j.fluid.2014.09.018</a>
</li>
<li> D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, 1974).
</li>
<li> L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
<a href="https://doi.org/10.1016/j.cplett.2008.01.028">https://doi.org/10.1016/j.cplett.2008.01.028</a>
</li>
<li> L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006).
<a href="https://doi.org/10.1016/j.molliq.2005.11.027">https://doi.org/10.1016/j.molliq.2005.11.027</a></li></ol>

Published

2018-03-10

How to Cite

Khorolskyi, O. V. (2018). Effective Radii of Macromolecules in Dilute Polyvinyl Alcohol Solutions. Ukrainian Journal of Physics, 63(2), 144. https://doi.org/10.15407/ujpe63.2.144

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)