Wetting under Electromagnetic Resonance Irradiation
DOI:
https://doi.org/10.15407/ujpe63.2.150Keywords:
resonance irradiation, density functional method, surface tension, wetting angleAbstract
The influence of the resonance electromagnetic irradiation on the wetting of a solid surface by liquid has been discussed. A simple model of a fluid consisting of two-level atoms, for which changes in their interaction due to a resonance irradiation can be found in the framework of the quantum-mechanical perturbation theory is considered, and the corresponding functional for the grand thermodynamic potential is found. The density functional method is used to calculate the surface tension at the liquid–vapor, solid–liquid, and solid–vapor interfaces, and the Young equation is applied to determine the wetting angle. It is shown that the resonance irradiation can significantly increase the latter parameter.
References
<li>P.G. de Gennes. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
<a href="https://doi.org/10.1103/RevModPhys.57.827">https://doi.org/10.1103/RevModPhys.57.827</a>
</li>
<li>M. Rauscher, S. Dietrich. Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38, 143 (2008).
<a href="https://doi.org/10.1146/annurev.matsci.38.060407.132451">https://doi.org/10.1146/annurev.matsci.38.060407.132451</a>
</li>
<li>D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley.Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).
<a href="https://doi.org/10.1103/RevModPhys.81.739">https://doi.org/10.1103/RevModPhys.81.739</a>
</li>
<li>W.F. Saam. Wetting, capillary condensation and more. J. Low Temp. Phys. 157, 77 (2009).
<a href="https://doi.org/10.1007/s10909-009-9904-0">https://doi.org/10.1007/s10909-009-9904-0</a>
</li>
<li>R. Evans. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979).
<a href="https://doi.org/10.1080/00018737900101365">https://doi.org/10.1080/00018737900101365</a>
</li>
<li>R. Evans. Density functionals in the theory of nonuniform fluids. In Fundamentals of Inhomogeneous Fluids. Edited by D. Henderson (Marcel Dekker, 1992), p. 85.
</li>
<li>R. Evans. Density functional theory for inhomogeneous fluids I: simple fluids in equilibrium. In Lecture Notes at the 3rd Warsaw School of Statistical Physics, Kazimierz Dolny, 27 June–3 July 2009 (Warsaw Univ. Press, 2010), p. 43.
</li>
<li>D.W. Oxtoby. Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 4, 7627 (1992).
<a href="https://doi.org/10.1088/0953-8984/4/38/001">https://doi.org/10.1088/0953-8984/4/38/001</a>
</li>
<li>O.V. Derzhko, V.M. Myhal. Selected Topics on the Theory of Nonuniform Classical Fluids: The Course of Lectures (Lviv Univ., 1999) (in Ukrainian).
</li>
<li> H. L?owen. Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys. Condens. Matter 14, 11897 (2002).
<a href="https://doi.org/10.1088/0953-8984/14/46/301">https://doi.org/10.1088/0953-8984/14/46/301</a>
</li>
<li> P. Tarazona, J.A. Cuesta, Y. Martinez-Rat’on. Density functional theories of hard particle systems. In Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lecture Notes in Physics, Vol. 753. Edited by A. Mulero (Springer, 2008), p. 247.
<a href="https://doi.org/10.1007/978-3-540-78767-9_7">https://doi.org/10.1007/978-3-540-78767-9_7</a>
</li>
<li> R. Roth. Fundamental measure theory for hard-sphere mixtures: a review. J. Phys. Condens. Matter 22, 063102 (2010).
<a href="https://doi.org/10.1088/0953-8984/22/6/063102">https://doi.org/10.1088/0953-8984/22/6/063102</a>
</li>
<li> J.F. Lutsko. Recent developments in classical density functional theory. Adv. Chem. Phys. 144, 1 (2010).
<a href="https://doi.org/10.1002/9780470564318.ch1">https://doi.org/10.1002/9780470564318.ch1</a>
</li>
<li> V.N. Malnev, S.I. Pekar. Intermolecular interaction and the equation of state for a highly excited gas. Zh. ` Eksp. Teor. Fiz. 51, 1811 (1966) (in Russian).
</li>
<li> V.N. Malnev. Equation of state for an excited gas. Zh. Eksp. Teor. Fiz. 56, 1325 (1969) (in Russian).
</li>
<li> V.N. Malnev, S.I. Pekar. To the theory of intermolecular interaction and the equation of state for an excited gas. Zh. ` Eksp. Teor. Fiz. 58, 1113 (1970) (in Russian).
</li>
<li> Yu.A. Vdovin. Equation of state for an excited gas. Zh. Eksp. Teor. Fiz. 54, 445 (1968) (in Russian).
</li>
<li> S.M. Bortsaikin, L.P. Kudrin, V.M. Novikov. The second virial coefficient for a system with a resonant transfer of atomic excitation. Zh. ` Eksp. Teor. Fiz. 60, 83 (1971) (in Russian).
</li>
<li> V.N. Malnev, R.A. Naryshkin. Metastable quasimolecules in excited gases. Ukr. J. Phys. 50, 333 (2005).
</li>
<li> I.R. Yukhnovskii, O.V. Derzhko, R.R. Levitskii. Cluster expansion method in the theory of equilibrium properties of a gas of atoms of which a part is excited. Physica A 203, 381 (1994).
<a href="https://doi.org/10.1016/0378-4371(94)90006-X">https://doi.org/10.1016/0378-4371(94)90006-X</a>
</li>
<li> O. Derzhko, R. Levitskii, O. Chernyavskii. Equilibrium properties of the gas of atoms of which a part is excited within cluster expansion method. Condens. Matter Phys. 6, 35 (1995).
<a href="https://doi.org/10.5488/CMP.6.35">https://doi.org/10.5488/CMP.6.35</a>
</li>
<li> O.I. Chernyavskii. The equilibrium properties of the two-component mixture of gases that contains particles in excited electronic states in cluster expansion method. Ukr. Fiz. Zh. 41, 811 (1996) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Inhomogeneous properties of atomic fluid in the electric field. Zh. Fiz. Dosl. 1, 402 (1997) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Nucleation phenomena in the atomic fluid in the electric field. Zh. Fiz. Dosl. 2, 339 (1998) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of inhomogeneous atomic fluid in the electric field. Gradient approximation. Zh. Fiz. Dosl. 4, 424 (2000) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Nucleation phenomena in a nonuniform atomic fluid in the electrical field. J. Mol. Liq. 92, 15 (2001).
<a href="https://doi.org/10.1016/S0167-7322(01)00173-8">https://doi.org/10.1016/S0167-7322(01)00173-8</a>
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms, some of which are in the excited state. The density functional method. Zh. Fiz. Dosl. 9, 156 (2005) (in Ukrainian).
</li>
<li> O. Derzhko, V. Myhal. A microscopic theory of photonucleation: Density functional approach to the properties of a fluid of two-level atoms, a part of which is excited. Condens. Matter Phys. 9, 703 (2006).
<a href="https://doi.org/10.5488/CMP.9.4.703">https://doi.org/10.5488/CMP.9.4.703</a>
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms, some of which are in the excited state. Cavitation. Zh. Fiz. Dosl. 10, 203 (2006) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms making allowance for the short-range order. Zh. Fiz. Dosl. 17, 3601 (2013) (in Ukrainian).
</li>
<li> V.M. Myhal, O.V. Derzhko. Vapor-liquid transition in a fluid of two-level atoms making allowance for the shortrange order. Zh. Fiz. Dosl. 18, 4603 (2014) (in Ukrainian).
</li>
<li> B.A. Bezuglyi, E.A. Galashin, G.Ya. Dudkin. On iodine photocondensation. Pis'ma Zh. Eksp. Teor. Fiz. 22, 76 (1975) (in Russian).
</li>
<li> A.E. Galashin, E.A. Galashin. Experimental study of photocondensation. Dokl. Akad. Nauk SSSR 225, 345 (1975) (in Russian).
</li>
<li> J.L. Katz, T. McLaughlin, F.C. Wen. Condensation of a supersaturated vapor. V. The nucleating effects of ultraviolet light on vapors containing very low concentrations of o-tolualdehyde. J. Chem. Phys. 75, 1459 (1981).
<a href="https://doi.org/10.1063/1.442153">https://doi.org/10.1063/1.442153</a>
</li>
<li> C.-C. Chen, J.L. Katz. Condensation of supersaturated vapor. VII. The photoinduced nucleation of o-tolualdehyde and its underlying reaction mechanism. J. Chem. Phys. 88, 5007 (1988).
<a href="https://doi.org/10.1063/1.454680">https://doi.org/10.1063/1.454680</a>
</li>
<li> J.A.E. Martens. Homogene und licht-induzierte Keimbildung in ?ubers?attigtem Quecksilberdampf. Dissertation (Univ. of Marburg/Lahn, 1987) (in German).
</li>
<li> G.-S. Cha. Homogene und licht-induzierte Keimbildung in ?ubers?attigtem C?asiumdampf in der Diffusionsnebelkammer. Dissertation (Univ. of Marburg/Lahn, 1992) (in German).
</li>
<li> S.D. Baranovskii, R. Dettmer, F. Hensel, H. Uchtmann. On the time decay of the photoinduced condensation in supersaturated vapors. J. Chem. Phys. 103, 7796 (1995).
<a href="https://doi.org/10.1063/1.470195">https://doi.org/10.1063/1.470195</a>
</li>
<li> J.A. Fisk, M.M. Rudek, J.L. Katz, D. Beiersdorf, H. Uchtmann. The homogeneous nucleation of cesium vapor. Atmos. Res. 46, 211 (1998).
<a href="https://doi.org/10.1016/S0169-8095(97)00063-X">https://doi.org/10.1016/S0169-8095(97)00063-X</a>
</li>
<li> H. Uchtmann, R. Dettmer, S.D. Baranovskii, F. Hensel. Photoinduced nucleation in supersaturated mercury vapor. J. Chem. Phys. 108, 9775 (1998).
<a href="https://doi.org/10.1063/1.476451">https://doi.org/10.1063/1.476451</a>
</li>
<li> H. Uchtmann, S.Yu. Kazitsyna, S.D. Baranovskii, F. Hensel, M. M. Rudek. Light-induced nucleation and optical absorption in cesium vapor. J. Chem. Phys. 113, 4171 (2000).
<a href="https://doi.org/10.1063/1.1288175">https://doi.org/10.1063/1.1288175</a>
</li>
<li> H. Uchtmann, S.Yu. Kazitsyna, F. Hensel, V. Zdimal, B. Triska, J. Smolik. Homogeneous and light-induced nucleation of sulfur vapor: diffusion cloud chamber investigations of constant rate supersaturation. J. Phys. Chem. B 105, 11754 (2001).
<a href="https://doi.org/10.1021/jp011666y">https://doi.org/10.1021/jp011666y</a>
</li>
<li> V. Myhal, O. Derzhko. Wetting in the presence of the electric field: the classical density functional theory study for a model system. Physica A 474, 293 (2017).
<a href="https://doi.org/10.1016/j.physa.2017.01.084">https://doi.org/10.1016/j.physa.2017.01.084</a>
</li>
<li> Allen's Astrophysical Quantities. Edited by A.N. Cox (Springer, 2002).
<a href="https://doi.org/10.1007/978-1-4612-1186-0">https://doi.org/10.1007/978-1-4612-1186-0</a>
</li>
<li> I.R. Yukhnovskii, R.R. Levitskii, O.V. Derzhko. To the statistical theory of partially excited systems. Pseudospin formalism for the electron problem. Preprint ITF-83-161R (Institute for Theoretical Physics, Kyiv, 1984) (in Russian).
</li>
<li> A. Malijevsk’y, A.O. Parry. Density functional study of complete, first-order and critical wedge filling transitions. J. Phys. Condens. Matter 25, 305005 (2013).
<a href="https://doi.org/10.1088/0953-8984/25/30/305005">https://doi.org/10.1088/0953-8984/25/30/305005</a>
</li>
<li> A. Malijevsk’y. Filling and wetting transitions at grooved substrates. J. Phys. Condens. Matter 25, 445006 (2013).
<a href="https://doi.org/10.1088/0953-8984/25/44/445006">https://doi.org/10.1088/0953-8984/25/44/445006</a>
</li>
<li> A. Malijevsk’y. Does surface roughness amplify wetting? J. Chem. Phys. 141, 184703 (2014).
<a href="https://doi.org/10.1063/1.4901128">https://doi.org/10.1063/1.4901128</a>
</li>
<li> D. Bonn, D. Ross. Wetting transitions. Rep. Prog. Phys. 64, 1085 (2001).
<a href="https://doi.org/10.1088/0034-4885/64/9/202">https://doi.org/10.1088/0034-4885/64/9/202</a>
</li>
<li> K.H. Kang. How electrostatic fields change contact angle in electrowetting. Langmuir 18, 10318 (2002).
<a href="https://doi.org/10.1021/la0263615">https://doi.org/10.1021/la0263615</a>
</li>
<li> M. Bier, I. Ibagon. Density functional theory of electrowetting. Phys. Rev. E 89, 042409 (2014).
<a href="https://doi.org/10.1103/PhysRevE.89.042409">https://doi.org/10.1103/PhysRevE.89.042409</a>
</li>
<li> Z. Rui, L. Qi-Chao, W. Ping, L. Zhong-Cheng. Contact angle hysteresis in electrowetting on dielectric. Chin. Phys. B 24, 086801 (2015).
<a href="https://doi.org/10.1088/1674-1056/24/8/086801">https://doi.org/10.1088/1674-1056/24/8/086801</a>
</li>
<li> A. Bateni, S. Laughton, H. Tavana, S.S. Susnar, A. Amirfazli, A.W. Neumann. Effect of electric fields on contact angle and surface tension of drops. J. Colloid Interf. Sci. 283, 215 (2005).
<a href="https://doi.org/10.1016/j.jcis.2004.08.134">https://doi.org/10.1016/j.jcis.2004.08.134</a>
</li>
<li> F. Mugele, J.-C. Baret. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705 (2005).
<a href="https://doi.org/10.1088/0953-8984/17/28/R01">https://doi.org/10.1088/0953-8984/17/28/R01</a>
</li>
<li> V. Vancauwenberghe, P. Di Marco, D. Brutin.Wetting and evaporation of a sessile drop under an external electrical field: A review. Colloid. Surface. A 432, 50 (2013).
<a href="https://doi.org/10.1016/j.colsurfa.2013.04.067">https://doi.org/10.1016/j.colsurfa.2013.04.067</a></li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.