Wetting under Electromagnetic Resonance Irradiation

Authors

  • V. M. Myhal Ivan Franko National University of Lviv, Chair of Theoretical Physics
  • O. V. Derzhko Ivan Franko National University of Lviv, Chair of Theoretical Physics, Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.2.150

Keywords:

resonance irradiation, density functional method, surface tension, wetting angle

Abstract

The influence of the resonance electromagnetic irradiation on the wetting of a solid surface by liquid has been discussed. A simple model of a fluid consisting of two-level atoms, for which changes in their interaction due to a resonance irradiation can be found in the framework of the quantum-mechanical perturbation theory is considered, and the corresponding functional for the grand thermodynamic potential is found. The density functional method is used to calculate the surface tension at the liquid–vapor, solid–liquid, and solid–vapor interfaces, and the Young equation is applied to determine the wetting angle. It is shown that the resonance irradiation can significantly increase the latter parameter.

References

<ol>
<li>P.G. de Gennes. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
<a href="https://doi.org/10.1103/RevModPhys.57.827">https://doi.org/10.1103/RevModPhys.57.827</a>
</li>
<li>M. Rauscher, S. Dietrich. Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res. 38, 143 (2008).
<a href="https://doi.org/10.1146/annurev.matsci.38.060407.132451">https://doi.org/10.1146/annurev.matsci.38.060407.132451</a>
</li>
<li>D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley.Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).
<a href="https://doi.org/10.1103/RevModPhys.81.739">https://doi.org/10.1103/RevModPhys.81.739</a>
</li>
<li>W.F. Saam. Wetting, capillary condensation and more. J. Low Temp. Phys. 157, 77 (2009).
<a href="https://doi.org/10.1007/s10909-009-9904-0">https://doi.org/10.1007/s10909-009-9904-0</a>
</li>
<li>R. Evans. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143 (1979).
<a href="https://doi.org/10.1080/00018737900101365">https://doi.org/10.1080/00018737900101365</a>
</li>
<li>R. Evans. Density functionals in the theory of nonuniform fluids. In Fundamentals of Inhomogeneous Fluids. Edited by D. Henderson (Marcel Dekker, 1992), p. 85.
</li>
<li>R. Evans. Density functional theory for inhomogeneous fluids I: simple fluids in equilibrium. In Lecture Notes at the 3rd Warsaw School of Statistical Physics, Kazimierz Dolny, 27 June–3 July 2009 (Warsaw Univ. Press, 2010), p. 43.
</li>
<li>D.W. Oxtoby. Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 4, 7627 (1992).
<a href="https://doi.org/10.1088/0953-8984/4/38/001">https://doi.org/10.1088/0953-8984/4/38/001</a>
</li>
<li>O.V. Derzhko, V.M. Myhal. Selected Topics on the Theory of Nonuniform Classical Fluids: The Course of Lectures (Lviv Univ., 1999) (in Ukrainian).
</li>
<li> H. L?owen. Density functional theory of inhomogeneous classical fluids: recent developments and new perspectives. J. Phys. Condens. Matter 14, 11897 (2002).
<a href="https://doi.org/10.1088/0953-8984/14/46/301">https://doi.org/10.1088/0953-8984/14/46/301</a>
</li>
<li> P. Tarazona, J.A. Cuesta, Y. Martinez-Rat’on. Density functional theories of hard particle systems. In Theory and Simulation of Hard-Sphere Fluids and Related Systems, Lecture Notes in Physics, Vol. 753. Edited by A. Mulero (Springer, 2008), p. 247.
<a href="https://doi.org/10.1007/978-3-540-78767-9_7">https://doi.org/10.1007/978-3-540-78767-9_7</a>
</li>
<li> R. Roth. Fundamental measure theory for hard-sphere mixtures: a review. J. Phys. Condens. Matter 22, 063102 (2010).
<a href="https://doi.org/10.1088/0953-8984/22/6/063102">https://doi.org/10.1088/0953-8984/22/6/063102</a>
</li>
<li> J.F. Lutsko. Recent developments in classical density functional theory. Adv. Chem. Phys. 144, 1 (2010).
<a href="https://doi.org/10.1002/9780470564318.ch1">https://doi.org/10.1002/9780470564318.ch1</a>
</li>
<li> V.N. Malnev, S.I. Pekar. Intermolecular interaction and the equation of state for a highly excited gas. Zh. ` Eksp. Teor. Fiz. 51, 1811 (1966) (in Russian).
</li>
<li> V.N. Malnev. Equation of state for an excited gas. Zh. Eksp. Teor. Fiz. 56, 1325 (1969) (in Russian).
</li>
<li> V.N. Malnev, S.I. Pekar. To the theory of intermolecular interaction and the equation of state for an excited gas. Zh. ` Eksp. Teor. Fiz. 58, 1113 (1970) (in Russian).
</li>
<li> Yu.A. Vdovin. Equation of state for an excited gas. Zh. Eksp. Teor. Fiz. 54, 445 (1968) (in Russian).
</li>
<li> S.M. Bortsaikin, L.P. Kudrin, V.M. Novikov. The second virial coefficient for a system with a resonant transfer of atomic excitation. Zh. ` Eksp. Teor. Fiz. 60, 83 (1971) (in Russian).
</li>
<li> V.N. Malnev, R.A. Naryshkin. Metastable quasimolecules in excited gases. Ukr. J. Phys. 50, 333 (2005).
</li>
<li> I.R. Yukhnovskii, O.V. Derzhko, R.R. Levitskii. Cluster expansion method in the theory of equilibrium properties of a gas of atoms of which a part is excited. Physica A 203, 381 (1994).
<a href="https://doi.org/10.1016/0378-4371(94)90006-X">https://doi.org/10.1016/0378-4371(94)90006-X</a>
</li>
<li> O. Derzhko, R. Levitskii, O. Chernyavskii. Equilibrium properties of the gas of atoms of which a part is excited within cluster expansion method. Condens. Matter Phys. 6, 35 (1995).
<a href="https://doi.org/10.5488/CMP.6.35">https://doi.org/10.5488/CMP.6.35</a>
</li>
<li> O.I. Chernyavskii. The equilibrium properties of the two-component mixture of gases that contains particles in excited electronic states in cluster expansion method. Ukr. Fiz. Zh. 41, 811 (1996) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Inhomogeneous properties of atomic fluid in the electric field. Zh. Fiz. Dosl. 1, 402 (1997) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Nucleation phenomena in the atomic fluid in the electric field. Zh. Fiz. Dosl. 2, 339 (1998) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of inhomogeneous atomic fluid in the electric field. Gradient approximation. Zh. Fiz. Dosl. 4, 424 (2000) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Nucleation phenomena in a nonuniform atomic fluid in the electrical field. J. Mol. Liq. 92, 15 (2001).
<a href="https://doi.org/10.1016/S0167-7322(01)00173-8">https://doi.org/10.1016/S0167-7322(01)00173-8</a>
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms, some of which are in the excited state. The density functional method. Zh. Fiz. Dosl. 9, 156 (2005) (in Ukrainian).
</li>
<li> O. Derzhko, V. Myhal. A microscopic theory of photonucleation: Density functional approach to the properties of a fluid of two-level atoms, a part of which is excited. Condens. Matter Phys. 9, 703 (2006).
<a href="https://doi.org/10.5488/CMP.9.4.703">https://doi.org/10.5488/CMP.9.4.703</a>
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms, some of which are in the excited state. Cavitation. Zh. Fiz. Dosl. 10, 203 (2006) (in Ukrainian).
</li>
<li> O.V. Derzhko, V.M. Myhal. Properties of a two-phase fluid of two-level atoms making allowance for the short-range order. Zh. Fiz. Dosl. 17, 3601 (2013) (in Ukrainian).
</li>
<li> V.M. Myhal, O.V. Derzhko. Vapor-liquid transition in a fluid of two-level atoms making allowance for the shortrange order. Zh. Fiz. Dosl. 18, 4603 (2014) (in Ukrainian).
</li>
<li> B.A. Bezuglyi, E.A. Galashin, G.Ya. Dudkin. On iodine photocondensation. Pis'ma Zh. Eksp. Teor. Fiz. 22, 76 (1975) (in Russian).
</li>
<li> A.E. Galashin, E.A. Galashin. Experimental study of photocondensation. Dokl. Akad. Nauk SSSR 225, 345 (1975) (in Russian).
</li>
<li> J.L. Katz, T. McLaughlin, F.C. Wen. Condensation of a supersaturated vapor. V. The nucleating effects of ultraviolet light on vapors containing very low concentrations of o-tolualdehyde. J. Chem. Phys. 75, 1459 (1981).
<a href="https://doi.org/10.1063/1.442153">https://doi.org/10.1063/1.442153</a>
</li>
<li> C.-C. Chen, J.L. Katz. Condensation of supersaturated vapor. VII. The photoinduced nucleation of o-tolualdehyde and its underlying reaction mechanism. J. Chem. Phys. 88, 5007 (1988).
<a href="https://doi.org/10.1063/1.454680">https://doi.org/10.1063/1.454680</a>
</li>
<li> J.A.E. Martens. Homogene und licht-induzierte Keimbildung in ?ubers?attigtem Quecksilberdampf. Dissertation (Univ. of Marburg/Lahn, 1987) (in German).
</li>
<li> G.-S. Cha. Homogene und licht-induzierte Keimbildung in ?ubers?attigtem C?asiumdampf in der Diffusionsnebelkammer. Dissertation (Univ. of Marburg/Lahn, 1992) (in German).
</li>
<li> S.D. Baranovskii, R. Dettmer, F. Hensel, H. Uchtmann. On the time decay of the photoinduced condensation in supersaturated vapors. J. Chem. Phys. 103, 7796 (1995).
<a href="https://doi.org/10.1063/1.470195">https://doi.org/10.1063/1.470195</a>
</li>
<li> J.A. Fisk, M.M. Rudek, J.L. Katz, D. Beiersdorf, H. Uchtmann. The homogeneous nucleation of cesium vapor. Atmos. Res. 46, 211 (1998).
<a href="https://doi.org/10.1016/S0169-8095(97)00063-X">https://doi.org/10.1016/S0169-8095(97)00063-X</a>
</li>
<li> H. Uchtmann, R. Dettmer, S.D. Baranovskii, F. Hensel. Photoinduced nucleation in supersaturated mercury vapor. J. Chem. Phys. 108, 9775 (1998).
<a href="https://doi.org/10.1063/1.476451">https://doi.org/10.1063/1.476451</a>
</li>
<li> H. Uchtmann, S.Yu. Kazitsyna, S.D. Baranovskii, F. Hensel, M. M. Rudek. Light-induced nucleation and optical absorption in cesium vapor. J. Chem. Phys. 113, 4171 (2000).
<a href="https://doi.org/10.1063/1.1288175">https://doi.org/10.1063/1.1288175</a>
</li>
<li> H. Uchtmann, S.Yu. Kazitsyna, F. Hensel, V. Zdimal, B. Triska, J. Smolik. Homogeneous and light-induced nucleation of sulfur vapor: diffusion cloud chamber investigations of constant rate supersaturation. J. Phys. Chem. B 105, 11754 (2001).
<a href="https://doi.org/10.1021/jp011666y">https://doi.org/10.1021/jp011666y</a>
</li>
<li> V. Myhal, O. Derzhko. Wetting in the presence of the electric field: the classical density functional theory study for a model system. Physica A 474, 293 (2017).
<a href="https://doi.org/10.1016/j.physa.2017.01.084">https://doi.org/10.1016/j.physa.2017.01.084</a>
</li>
<li> Allen's Astrophysical Quantities. Edited by A.N. Cox (Springer, 2002).
<a href="https://doi.org/10.1007/978-1-4612-1186-0">https://doi.org/10.1007/978-1-4612-1186-0</a>
</li>
<li> I.R. Yukhnovskii, R.R. Levitskii, O.V. Derzhko. To the statistical theory of partially excited systems. Pseudospin formalism for the electron problem. Preprint ITF-83-161R (Institute for Theoretical Physics, Kyiv, 1984) (in Russian).
</li>
<li> A. Malijevsk’y, A.O. Parry. Density functional study of complete, first-order and critical wedge filling transitions. J. Phys. Condens. Matter 25, 305005 (2013).
<a href="https://doi.org/10.1088/0953-8984/25/30/305005">https://doi.org/10.1088/0953-8984/25/30/305005</a>
</li>
<li> A. Malijevsk’y. Filling and wetting transitions at grooved substrates. J. Phys. Condens. Matter 25, 445006 (2013).
<a href="https://doi.org/10.1088/0953-8984/25/44/445006">https://doi.org/10.1088/0953-8984/25/44/445006</a>
</li>
<li> A. Malijevsk’y. Does surface roughness amplify wetting? J. Chem. Phys. 141, 184703 (2014).
<a href="https://doi.org/10.1063/1.4901128">https://doi.org/10.1063/1.4901128</a>
</li>
<li> D. Bonn, D. Ross. Wetting transitions. Rep. Prog. Phys. 64, 1085 (2001).
<a href="https://doi.org/10.1088/0034-4885/64/9/202">https://doi.org/10.1088/0034-4885/64/9/202</a>
</li>
<li> K.H. Kang. How electrostatic fields change contact angle in electrowetting. Langmuir 18, 10318 (2002).
<a href="https://doi.org/10.1021/la0263615">https://doi.org/10.1021/la0263615</a>
</li>
<li> M. Bier, I. Ibagon. Density functional theory of electrowetting. Phys. Rev. E 89, 042409 (2014).
<a href="https://doi.org/10.1103/PhysRevE.89.042409">https://doi.org/10.1103/PhysRevE.89.042409</a>
</li>
<li> Z. Rui, L. Qi-Chao, W. Ping, L. Zhong-Cheng. Contact angle hysteresis in electrowetting on dielectric. Chin. Phys. B 24, 086801 (2015).
<a href="https://doi.org/10.1088/1674-1056/24/8/086801">https://doi.org/10.1088/1674-1056/24/8/086801</a>
</li>
<li> A. Bateni, S. Laughton, H. Tavana, S.S. Susnar, A. Amirfazli, A.W. Neumann. Effect of electric fields on contact angle and surface tension of drops. J. Colloid Interf. Sci. 283, 215 (2005).
<a href="https://doi.org/10.1016/j.jcis.2004.08.134">https://doi.org/10.1016/j.jcis.2004.08.134</a>
</li>
<li> F. Mugele, J.-C. Baret. Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705 (2005).
<a href="https://doi.org/10.1088/0953-8984/17/28/R01">https://doi.org/10.1088/0953-8984/17/28/R01</a>
</li>
<li> V. Vancauwenberghe, P. Di Marco, D. Brutin.Wetting and evaporation of a sessile drop under an external electrical field: A review. Colloid. Surface. A 432, 50 (2013).
<a href="https://doi.org/10.1016/j.colsurfa.2013.04.067">https://doi.org/10.1016/j.colsurfa.2013.04.067</a></li></ol>

Published

2018-03-10

How to Cite

Myhal, V. M., & Derzhko, O. V. (2018). Wetting under Electromagnetic Resonance Irradiation. Ukrainian Journal of Physics, 63(2), 150. https://doi.org/10.15407/ujpe63.2.150

Issue

Section

Liquid crystals and polymers

Most read articles by the same author(s)