Self-Organized Structuring of the Surface of a Metal–Semiconductor Composite by Femtosecond Laser Processing

Authors

  • N. Berezovska Faculty of Physics, Taras Shevchenko National University of Kyiv
  • I. Dmitruk Faculty of Physics, Taras Shevchenko National University of Kyiv
  • A. Kalyuzhnyy Faculty of Physics, Taras Shevchenko National University of Kyiv
  • A. Dmytruk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. Blonskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.5.406

Keywords:

solar cell, thin film, nanoparticle, laser-induced periodic surface structure, surface plasmon

Abstract

Peculiarities of the laser treatment of a composite consisting of a thin film of a metal (gold) on the surface of a semiconductor substrate [silicon (100)] have been studied. Micro- and nanostructurings of the metal-semiconductor composite sample have been achieved by the irradiation of its initial surface with a Ti : sapphire femtosecond laser. Laser ablation leads to the patterning of the surface of the composite with laser-induced periodic surface structures (LIPSS) and the formation of semiconductor nanohills, metal nanoparticles, and/or nanowires on the top of hills. The presence of some nanoscale surface features is confirmed by a low-frequency shift of the silicon phonon band in Raman spectra. Prepared microstructured surface barrier solar cells are characterized by means of scanning electron microscopy, optical spectroscopy, and photoelectric measurements.

References

<ol>
<li>H.A. Atwater, A. Polman. Plasmonics for improved photo-voltaic devices. Nat. Mater. 9, 205 (2010).
<a href="https://doi.org/10.1038/nmat2629">https://doi.org/10.1038/nmat2629</a>
</li>
<li>K. Zhou, Z. Guo, S. Liu, J.-H. Lee. Current approach in surface plasmons for thin film and wire array solar cell applications. Materials 8, 4565 (2015).
<a href="https://doi.org/10.3390/ma8074565">https://doi.org/10.3390/ma8074565</a>
</li>
<li>D. Thrithamarassery Gangadharan, Z. Xu, Y. Liu, R. Izquierdo, D. Ma. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6, 153 (2017).
<a href="https://doi.org/10.1515/nanoph-2016-0111">https://doi.org/10.1515/nanoph-2016-0111</a>
</li>
<li>X. Liu, L. Jia, G. Fan, J. Gou, S.F. Liu, B. Yan. Au nanoparticle enhanced thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 225 (2016).
<a href="https://doi.org/10.1016/j.solmat.2015.12.004">https://doi.org/10.1016/j.solmat.2015.12.004</a>
</li>
<li>M.J. Jeng, Z.Y. Chen, Y.L. Xiao, L.B. Chang, J. Ao, Y. Sun, E. Popko, W. Jacak, L. Chow. Improving efficiency of multicrystalline silicon and cigs solar cells by incorporating metal nanoparticles. Materials 8, 6761 (2015).
<a href="https://doi.org/10.3390/ma8105337">https://doi.org/10.3390/ma8105337</a>
</li>
<li>M. Kirkengena, J. Bergli, Y.M. Galperin. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J. Appl. Phys. 102, 093713 (2007).
<a href="https://doi.org/10.1063/1.2809368">https://doi.org/10.1063/1.2809368</a>
</li>
<li>Y. Liu, W. Zi, S. Liu, B. Yan. Effective light trapping by hybrid nanostructure for crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 140, 180 (2015).
<a href="https://doi.org/10.1016/j.solmat.2015.04.019">https://doi.org/10.1016/j.solmat.2015.04.019</a>
</li>
<li>A.Y. Vorobyev, C. Guo. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express. 19, A1031 (2011).
<a href="https://doi.org/10.1364/OE.19.0A1031">https://doi.org/10.1364/OE.19.0A1031</a>
</li>
<li>B. ? Oktem, I. Pavlov, S. Ilday, H. Kalaycioglu, A. Rybak, S. Yavas, M. Erdogan, and F. ? O. Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897 (2013).
<a href="https://doi.org/10.1038/nphoton.2013.272">https://doi.org/10.1038/nphoton.2013.272</a>
</li>
<li> M.D. Yang, Y.K. Liu, J.L. Shen, C.H. Wu, C.A. Lin, W.H. Chang, H.H. Wang, H.I. Yeh, W.H. Chan, W.J. Parak. Improvement of conversion efficiency for multijunction solar cells by incorporation of Au nanoclusters. Opt. Express. 16, 15754 (2008).
<a href="https://doi.org/10.1364/OE.16.015754">https://doi.org/10.1364/OE.16.015754</a>
</li>
<li> S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009).
<a href="https://doi.org/10.1063/1.3200948">https://doi.org/10.1063/1.3200948</a>
</li>
<li> O. Guilatt, B. Apter, U. Efron. Light absorption enhancement in thin silicon film by embedded metallic nanoshells. Opt. Lett. 35, 1139 (2010).
<a href="https://doi.org/10.1364/OL.35.001139">https://doi.org/10.1364/OL.35.001139</a>
</li>
<li> A. Medvid, I. Dmytruk, P. Onufrijevs, I. Pundyk. Quantum confinement effect in nanohills formed on a surface of Ge by laser radiation. Phys. Status Solidi C 4, 3066 (2007).
<a href="https://doi.org/10.1002/pssc.200675477">https://doi.org/10.1002/pssc.200675477</a>
</li>
<li> N.L. Dmitruk, O.Yu. Borkovskaya, I.B. Mamontova, S.V. Mamykin, S.Z. Malynych, V.R. Romanyuk. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces. Nanoscale Research Lett. 10, 72 (2015).
<a href="https://doi.org/10.1186/s11671-015-0786-6">https://doi.org/10.1186/s11671-015-0786-6</a>
</li>
<li> M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano. 3, 4062 (2009).
<a href="https://doi.org/10.1021/nn900654v">https://doi.org/10.1021/nn900654v</a>
</li>
<li> R. Buividas, M. Mikutis, S. Juodkazis. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog. Quant. Electron. 38, 119 (2014).
<a href="https://doi.org/10.1016/j.pquantelec.2014.03.002">https://doi.org/10.1016/j.pquantelec.2014.03.002</a>
</li>
<li> J. Bonse, S.V. Kirner, S. H?ohm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Kr?uger. Applications of laser-induced periodic surface structures (LIPSS). Proc. of SPIE 10092, 100920N, (2017).
<a href="https://doi.org/10.1117/12.2250919">https://doi.org/10.1117/12.2250919</a>
</li>
<li> P. Feng, L. Jiang, X. Li, W. Rong, K. Zhang, Q. Cao. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures. Appl. Opt. 54, 1314 (2015).
<a href="https://doi.org/10.1364/AO.54.001314">https://doi.org/10.1364/AO.54.001314</a>
</li>
<li> V. Saikiran, Mudasir H Dar, R. Kuladeep, Narayana Rao Desai. Ultrafast laser induced subwavelength periodic surface structures on semiconductors/metals and application to SERS studies. MRS Advances 1, 3317 (2016).
<a href="https://doi.org/10.1557/adv.2016.468">https://doi.org/10.1557/adv.2016.468</a>
</li>
<li> Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma. Femtosecond laser nanostructuring of silver film. Appl. Phys. A 106, 567 (2012).
<a href="https://doi.org/10.1007/s00339-011-6705-5">https://doi.org/10.1007/s00339-011-6705-5</a>
</li>
<li> A. Takami, Y. Nakajima, M. Terakawa. Formation of gold grating structures on fused silica substrates by femtosecond laser irradiation. J. Appl. Phys. 121, 173103 (2017).
<a href="https://doi.org/10.1063/1.4982759">https://doi.org/10.1063/1.4982759</a>
</li>
<li> K. Yin, C. Wang, J Duan, C. Guo. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating. Appl. Phys. A 122, 834 (2016).
<a href="https://doi.org/10.1007/s00339-016-0361-8">https://doi.org/10.1007/s00339-016-0361-8</a>
</li>
<li> V.V. Bazhenov, A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin. Interference of surface electromagnetic waves in connection with periodic structures formed during intense illumination of a semiconductor surface. Sov. Tech. Phys. Lett. 10, 642 (1984).
</li>
<li> A. Y. Vorobyev, V. S. Makin, C. Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J. Appl. Phys. 101, 034903 (2007).
<a href="https://doi.org/10.1063/1.2432288">https://doi.org/10.1063/1.2432288</a>
</li>
<li> J. Bonse, A. Rosenfeld, J. Kruger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 106, 104910 (2009).
<a href="https://doi.org/10.1063/1.3261734">https://doi.org/10.1063/1.3261734</a>
</li>
<li> E.L. Gurevich, S.V. Gurevich. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118 (2014).
<a href="https://doi.org/10.1016/j.apsusc.2013.10.141">https://doi.org/10.1016/j.apsusc.2013.10.141</a>
</li>
<li> J.C. Wang, C.L. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metal. Appl. Phys. Lett. 87, 251914 (2005).
<a href="https://doi.org/10.1063/1.2146067">https://doi.org/10.1063/1.2146067</a>
</li>
<li> K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, Zh. Sun. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwave-length periodic ripples on Au film by pump-probe imaging. J. Appl. Phys. 121, 104301 (2017).
<a href="https://doi.org/10.1063/1.4978375">https://doi.org/10.1063/1.4978375</a>
</li>
<li> E.L. Gurevich, Y. Levy, S.V. Gurevich, N.M. Bulgakova. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser. Phys. Rev. B 95, 054305 (2017).
<a href="https://doi.org/10.1103/PhysRevB.95.054305 ">https://doi.org/10.1103/PhysRevB.95.054305 </a></li>

Downloads

Published

2018-07-03

How to Cite

Berezovska, N., Dmitruk, I., Kalyuzhnyy, A., Dmytruk, A., & Blonskyi, I. (2018). Self-Organized Structuring of the Surface of a Metal–Semiconductor Composite by Femtosecond Laser Processing. Ukrainian Journal of Physics, 63(5), 406. https://doi.org/10.15407/ujpe63.5.406

Issue

Section

Surface physics