Self-Organized Structuring of the Surface of a Metal–Semiconductor Composite by Femtosecond Laser Processing

  • N. Berezovska Faculty of Physics, Taras Shevchenko National University of Kyiv
  • I. Dmitruk Faculty of Physics, Taras Shevchenko National University of Kyiv
  • A. Kalyuzhnyy Faculty of Physics, Taras Shevchenko National University of Kyiv
  • A. Dmytruk Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I. Blonskyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: solar cell, thin film, nanoparticle, laser-induced periodic surface structure, surface plasmon


Peculiarities of the laser treatment of a composite consisting of a thin film of a metal (gold) on the surface of a semiconductor substrate [silicon (100)] have been studied. Micro- and nanostructurings of the metal-semiconductor composite sample have been achieved by the irradiation of its initial surface with a Ti : sapphire femtosecond laser. Laser ablation leads to the patterning of the surface of the composite with laser-induced periodic surface structures (LIPSS) and the formation of semiconductor nanohills, metal nanoparticles, and/or nanowires on the top of hills. The presence of some nanoscale surface features is confirmed by a low-frequency shift of the silicon phonon band in Raman spectra. Prepared microstructured surface barrier solar cells are characterized by means of scanning electron microscopy, optical spectroscopy, and photoelectric measurements.


  1. H.A. Atwater, A. Polman. Plasmonics for improved photo-voltaic devices. Nat. Mater. 9, 205 (2010).

  2. K. Zhou, Z. Guo, S. Liu, J.-H. Lee. Current approach in surface plasmons for thin film and wire array solar cell applications. Materials 8, 4565 (2015).

  3. D. Thrithamarassery Gangadharan, Z. Xu, Y. Liu, R. Izquierdo, D. Ma. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6, 153 (2017).

  4. X. Liu, L. Jia, G. Fan, J. Gou, S.F. Liu, B. Yan. Au nanoparticle enhanced thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 225 (2016).

  5. M.J. Jeng, Z.Y. Chen, Y.L. Xiao, L.B. Chang, J. Ao, Y. Sun, E. Popko, W. Jacak, L. Chow. Improving efficiency of multicrystalline silicon and cigs solar cells by incorporating metal nanoparticles. Materials 8, 6761 (2015).

  6. M. Kirkengena, J. Bergli, Y.M. Galperin. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J. Appl. Phys. 102, 093713 (2007).

  7. Y. Liu, W. Zi, S. Liu, B. Yan. Effective light trapping by hybrid nanostructure for crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 140, 180 (2015).

  8. A.Y. Vorobyev, C. Guo. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express. 19, A1031 (2011).

  9. B. ? Oktem, I. Pavlov, S. Ilday, H. Kalaycioglu, A. Rybak, S. Yavas, M. Erdogan, and F. ? O. Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897 (2013).

  10. M.D. Yang, Y.K. Liu, J.L. Shen, C.H. Wu, C.A. Lin, W.H. Chang, H.H. Wang, H.I. Yeh, W.H. Chan, W.J. Parak. Improvement of conversion efficiency for multijunction solar cells by incorporation of Au nanoclusters. Opt. Express. 16, 15754 (2008).

  11. S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009).

  12. O. Guilatt, B. Apter, U. Efron. Light absorption enhancement in thin silicon film by embedded metallic nanoshells. Opt. Lett. 35, 1139 (2010).

  13. A. Medvid, I. Dmytruk, P. Onufrijevs, I. Pundyk. Quantum confinement effect in nanohills formed on a surface of Ge by laser radiation. Phys. Status Solidi C 4, 3066 (2007).

  14. N.L. Dmitruk, O.Yu. Borkovskaya, I.B. Mamontova, S.V. Mamykin, S.Z. Malynych, V.R. Romanyuk. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces. Nanoscale Research Lett. 10, 72 (2015).

  15. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano. 3, 4062 (2009).

  16. R. Buividas, M. Mikutis, S. Juodkazis. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog. Quant. Electron. 38, 119 (2014).

  17. J. Bonse, S.V. Kirner, S. H?ohm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Kr?uger. Applications of laser-induced periodic surface structures (LIPSS). Proc. of SPIE 10092, 100920N, (2017).

  18. P. Feng, L. Jiang, X. Li, W. Rong, K. Zhang, Q. Cao. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures. Appl. Opt. 54, 1314 (2015).

  19. V. Saikiran, Mudasir H Dar, R. Kuladeep, Narayana Rao Desai. Ultrafast laser induced subwavelength periodic surface structures on semiconductors/metals and application to SERS studies. MRS Advances 1, 3317 (2016).

  20. Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma. Femtosecond laser nanostructuring of silver film. Appl. Phys. A 106, 567 (2012).

  21. A. Takami, Y. Nakajima, M. Terakawa. Formation of gold grating structures on fused silica substrates by femtosecond laser irradiation. J. Appl. Phys. 121, 173103 (2017).

  22. K. Yin, C. Wang, J Duan, C. Guo. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating. Appl. Phys. A 122, 834 (2016).

  23. V.V. Bazhenov, A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin. Interference of surface electromagnetic waves in connection with periodic structures formed during intense illumination of a semiconductor surface. Sov. Tech. Phys. Lett. 10, 642 (1984).

  24. A. Y. Vorobyev, V. S. Makin, C. Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J. Appl. Phys. 101, 034903 (2007).

  25. J. Bonse, A. Rosenfeld, J. Kruger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 106, 104910 (2009).

  26. E.L. Gurevich, S.V. Gurevich. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118 (2014).

  27. J.C. Wang, C.L. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metal. Appl. Phys. Lett. 87, 251914 (2005).

  28. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, Zh. Sun. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwave-length periodic ripples on Au film by pump-probe imaging. J. Appl. Phys. 121, 104301 (2017).

  29. E.L. Gurevich, Y. Levy, S.V. Gurevich, N.M. Bulgakova. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser. Phys. Rev. B 95, 054305 (2017).
How to Cite
Berezovska, N., Dmitruk, I., Kalyuzhnyy, A., Dmytruk, A., & Blonskyi, I. (2018). Self-Organized Structuring of the Surface of a Metal–Semiconductor Composite by Femtosecond Laser Processing. Ukrainian Journal of Physics, 63(5), 406.
Surface physics