Self-Organized Structuring of the Surface of a Metal–Semiconductor Composite by Femtosecond Laser Processing
DOI:
https://doi.org/10.15407/ujpe63.5.406Keywords:
solar cell, thin film, nanoparticle, laser-induced periodic surface structure, surface plasmonAbstract
Peculiarities of the laser treatment of a composite consisting of a thin film of a metal (gold) on the surface of a semiconductor substrate [silicon (100)] have been studied. Micro- and nanostructurings of the metal-semiconductor composite sample have been achieved by the irradiation of its initial surface with a Ti : sapphire femtosecond laser. Laser ablation leads to the patterning of the surface of the composite with laser-induced periodic surface structures (LIPSS) and the formation of semiconductor nanohills, metal nanoparticles, and/or nanowires on the top of hills. The presence of some nanoscale surface features is confirmed by a low-frequency shift of the silicon phonon band in Raman spectra. Prepared microstructured surface barrier solar cells are characterized by means of scanning electron microscopy, optical spectroscopy, and photoelectric measurements.
References
<li>H.A. Atwater, A. Polman. Plasmonics for improved photo-voltaic devices. Nat. Mater. 9, 205 (2010).
<a href="https://doi.org/10.1038/nmat2629">https://doi.org/10.1038/nmat2629</a>
</li>
<li>K. Zhou, Z. Guo, S. Liu, J.-H. Lee. Current approach in surface plasmons for thin film and wire array solar cell applications. Materials 8, 4565 (2015).
<a href="https://doi.org/10.3390/ma8074565">https://doi.org/10.3390/ma8074565</a>
</li>
<li>D. Thrithamarassery Gangadharan, Z. Xu, Y. Liu, R. Izquierdo, D. Ma. Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6, 153 (2017).
<a href="https://doi.org/10.1515/nanoph-2016-0111">https://doi.org/10.1515/nanoph-2016-0111</a>
</li>
<li>X. Liu, L. Jia, G. Fan, J. Gou, S.F. Liu, B. Yan. Au nanoparticle enhanced thin-film silicon solar cells. Sol. Energy Mater. Sol. Cells 147, 225 (2016).
<a href="https://doi.org/10.1016/j.solmat.2015.12.004">https://doi.org/10.1016/j.solmat.2015.12.004</a>
</li>
<li>M.J. Jeng, Z.Y. Chen, Y.L. Xiao, L.B. Chang, J. Ao, Y. Sun, E. Popko, W. Jacak, L. Chow. Improving efficiency of multicrystalline silicon and cigs solar cells by incorporating metal nanoparticles. Materials 8, 6761 (2015).
<a href="https://doi.org/10.3390/ma8105337">https://doi.org/10.3390/ma8105337</a>
</li>
<li>M. Kirkengena, J. Bergli, Y.M. Galperin. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles. J. Appl. Phys. 102, 093713 (2007).
<a href="https://doi.org/10.1063/1.2809368">https://doi.org/10.1063/1.2809368</a>
</li>
<li>Y. Liu, W. Zi, S. Liu, B. Yan. Effective light trapping by hybrid nanostructure for crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 140, 180 (2015).
<a href="https://doi.org/10.1016/j.solmat.2015.04.019">https://doi.org/10.1016/j.solmat.2015.04.019</a>
</li>
<li>A.Y. Vorobyev, C. Guo. Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express. 19, A1031 (2011).
<a href="https://doi.org/10.1364/OE.19.0A1031">https://doi.org/10.1364/OE.19.0A1031</a>
</li>
<li>B. ? Oktem, I. Pavlov, S. Ilday, H. Kalaycioglu, A. Rybak, S. Yavas, M. Erdogan, and F. ? O. Ilday, Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897 (2013).
<a href="https://doi.org/10.1038/nphoton.2013.272">https://doi.org/10.1038/nphoton.2013.272</a>
</li>
<li> M.D. Yang, Y.K. Liu, J.L. Shen, C.H. Wu, C.A. Lin, W.H. Chang, H.H. Wang, H.I. Yeh, W.H. Chan, W.J. Parak. Improvement of conversion efficiency for multijunction solar cells by incorporation of Au nanoclusters. Opt. Express. 16, 15754 (2008).
<a href="https://doi.org/10.1364/OE.16.015754">https://doi.org/10.1364/OE.16.015754</a>
</li>
<li> S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Appl. Phys. Lett. 95, 053115 (2009).
<a href="https://doi.org/10.1063/1.3200948">https://doi.org/10.1063/1.3200948</a>
</li>
<li> O. Guilatt, B. Apter, U. Efron. Light absorption enhancement in thin silicon film by embedded metallic nanoshells. Opt. Lett. 35, 1139 (2010).
<a href="https://doi.org/10.1364/OL.35.001139">https://doi.org/10.1364/OL.35.001139</a>
</li>
<li> A. Medvid, I. Dmytruk, P. Onufrijevs, I. Pundyk. Quantum confinement effect in nanohills formed on a surface of Ge by laser radiation. Phys. Status Solidi C 4, 3066 (2007).
<a href="https://doi.org/10.1002/pssc.200675477">https://doi.org/10.1002/pssc.200675477</a>
</li>
<li> N.L. Dmitruk, O.Yu. Borkovskaya, I.B. Mamontova, S.V. Mamykin, S.Z. Malynych, V.R. Romanyuk. Metal nanoparticle-enhanced photocurrent in GaAs photovoltaic structures with microtextured interfaces. Nanoscale Research Lett. 10, 72 (2015).
<a href="https://doi.org/10.1186/s11671-015-0786-6">https://doi.org/10.1186/s11671-015-0786-6</a>
</li>
<li> M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano. 3, 4062 (2009).
<a href="https://doi.org/10.1021/nn900654v">https://doi.org/10.1021/nn900654v</a>
</li>
<li> R. Buividas, M. Mikutis, S. Juodkazis. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog. Quant. Electron. 38, 119 (2014).
<a href="https://doi.org/10.1016/j.pquantelec.2014.03.002">https://doi.org/10.1016/j.pquantelec.2014.03.002</a>
</li>
<li> J. Bonse, S.V. Kirner, S. H?ohm, N. Epperlein, D. Spaltmann, A. Rosenfeld, J. Kr?uger. Applications of laser-induced periodic surface structures (LIPSS). Proc. of SPIE 10092, 100920N, (2017).
<a href="https://doi.org/10.1117/12.2250919">https://doi.org/10.1117/12.2250919</a>
</li>
<li> P. Feng, L. Jiang, X. Li, W. Rong, K. Zhang, Q. Cao. Gold-film coating assisted femtosecond laser fabrication of large-area, uniform periodic surface structures. Appl. Opt. 54, 1314 (2015).
<a href="https://doi.org/10.1364/AO.54.001314">https://doi.org/10.1364/AO.54.001314</a>
</li>
<li> V. Saikiran, Mudasir H Dar, R. Kuladeep, Narayana Rao Desai. Ultrafast laser induced subwavelength periodic surface structures on semiconductors/metals and application to SERS studies. MRS Advances 1, 3317 (2016).
<a href="https://doi.org/10.1557/adv.2016.468">https://doi.org/10.1557/adv.2016.468</a>
</li>
<li> Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma. Femtosecond laser nanostructuring of silver film. Appl. Phys. A 106, 567 (2012).
<a href="https://doi.org/10.1007/s00339-011-6705-5">https://doi.org/10.1007/s00339-011-6705-5</a>
</li>
<li> A. Takami, Y. Nakajima, M. Terakawa. Formation of gold grating structures on fused silica substrates by femtosecond laser irradiation. J. Appl. Phys. 121, 173103 (2017).
<a href="https://doi.org/10.1063/1.4982759">https://doi.org/10.1063/1.4982759</a>
</li>
<li> K. Yin, C. Wang, J Duan, C. Guo. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating. Appl. Phys. A 122, 834 (2016).
<a href="https://doi.org/10.1007/s00339-016-0361-8">https://doi.org/10.1007/s00339-016-0361-8</a>
</li>
<li> V.V. Bazhenov, A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin. Interference of surface electromagnetic waves in connection with periodic structures formed during intense illumination of a semiconductor surface. Sov. Tech. Phys. Lett. 10, 642 (1984).
</li>
<li> A. Y. Vorobyev, V. S. Makin, C. Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. J. Appl. Phys. 101, 034903 (2007).
<a href="https://doi.org/10.1063/1.2432288">https://doi.org/10.1063/1.2432288</a>
</li>
<li> J. Bonse, A. Rosenfeld, J. Kruger. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 106, 104910 (2009).
<a href="https://doi.org/10.1063/1.3261734">https://doi.org/10.1063/1.3261734</a>
</li>
<li> E.L. Gurevich, S.V. Gurevich. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118 (2014).
<a href="https://doi.org/10.1016/j.apsusc.2013.10.141">https://doi.org/10.1016/j.apsusc.2013.10.141</a>
</li>
<li> J.C. Wang, C.L. Guo. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metal. Appl. Phys. Lett. 87, 251914 (2005).
<a href="https://doi.org/10.1063/1.2146067">https://doi.org/10.1063/1.2146067</a>
</li>
<li> K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, Zh. Sun. The influences of surface plasmons and thermal effects on femtosecond laser-induced subwave-length periodic ripples on Au film by pump-probe imaging. J. Appl. Phys. 121, 104301 (2017).
<a href="https://doi.org/10.1063/1.4978375">https://doi.org/10.1063/1.4978375</a>
</li>
<li> E.L. Gurevich, Y. Levy, S.V. Gurevich, N.M. Bulgakova. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser. Phys. Rev. B 95, 054305 (2017).
<a href="https://doi.org/10.1103/PhysRevB.95.054305 ">https://doi.org/10.1103/PhysRevB.95.054305 </a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.