Influence of Longitudinal Electric Field on Thermodynamic Properties of NH3CH2COOH·H2PO3 Ferroelectric

Authors

  • A. S. Vdovych Institute for Condensed Matter Physics, Nat. Acad. Sci. of Ukraine
  • I. R. Zachek Lviv Polytechnic National University
  • R. R. Levitskii Institute for Condensed Matter Physics, Nat. Acad. Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.4.350

Keywords:

ferroelectrics, electric field, polarization, dielectric permittivity, piezoelectric coefficients

Abstract

Using a modified model of ferroelectric glycine phosphite by considering the piezoelectric coupling with strains e1 within the two-particle cluster approximation, the expressions for the polarization vector, static dielectric permittivity tensor, piezoelectric coefficients, and elastic constants of the crystal in the presence of a longitudinal electric field E2 are calculated. An analysis of the influence of this field on thermodynamic characteristics of the crystal is carried out. The dependence of effective dipole moments on order parameters is taken into account. This allowed us to agree the effective dipole moments in the ferro- and paraelectric
phases and to describe the smearing of phase transition under the influence of an electric field. The satisfactory quantitative description of the available experimental data for these characteristics has been obtained at the proper choice of the model parameters.

References

<ol>
<li>S. Dacko, Z. Czapla, J. Baran, M. Drozd. Ferroelectricity in Gly·H3PO3 crystal. Phys. Lett. A 223, 217 (1996).
<a href="https://doi.org/10.1016/S0375-9601(96)00698-6">https://doi.org/10.1016/S0375-9601(96)00698-6</a>
</li>
<li>J. Baran, G. Bator, R. Jakubas, M. Sledz. Dielectric dispersion and vibrational studies of a new ferroelectric, glycinium phosphite crystal. J. Phys.: Condens. Matter 8, 10647 (1996).
<a href="https://doi.org/10.1088/0953-8984/8/49/049">https://doi.org/10.1088/0953-8984/8/49/049</a>
</li>
<li>M.-T. Averbuch-Pouchot. Structures of glycinium phosphite and glycylglycinium hosphite. Acta Crystalogr. C 49, 815 (1993).
<a href="https://doi.org/10.1107/S0108270192010771">https://doi.org/10.1107/S0108270192010771</a>
</li>
<li>I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. Proton ordering model of phase transitions in hydrogen bonded ferrielectric type systems: The GPI crystal. Condens. Matter Phys. 6, 483 (2003).
<a href="https://doi.org/10.5488/CMP.6.3.483">https://doi.org/10.5488/CMP.6.3.483</a>
</li>
<li>I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. Dielectric anomalies and phase transition in glycinium phosphite crystal under the influence of a transverse electric field. J. Phys.: Condens. Matter 16, 1963 (2004).
<a href="https://doi.org/10.1088/0953-8984/16/12/006">https://doi.org/10.1088/0953-8984/16/12/006</a>
</li>
<li>I. Stasyuk, O. Velychko. Theory of electric field influence on phase transition in glycine phosphite. Ferroelectrics 300, 121 (2004).
<a href="https://doi.org/10.1080/00150190490443622">https://doi.org/10.1080/00150190490443622</a>
</li>
<li>I.R. Zachek,Ya. Shchur,R.R. Levitskii,A.S.Vdovych.Thermodynamic properties of ferroelectricNH3CH2COOH·H2PO3 crystal. Physica B 520, 164 (2017).
<a href="https://doi.org/10.1016/j.physb.2017.06.013">https://doi.org/10.1016/j.physb.2017.06.013</a>
</li>
<li>I.R. Zachek, R.R. Levitskii, A.S. Vdovych, I.V. Stasyuk. Influence of electric fields on dielectric properties of GPI ferroelectric. Condens. Matter Phys. 20, 23706 (2017).
<a href="https://doi.org/10.5488/CMP.20.23706">https://doi.org/10.5488/CMP.20.23706</a>
</li>
<li>I.R. Zachek, R.R. Levitskii, A.S. Vdovych. Influence of hydrostatic pressure on thermodynamic characteristics of NH3CH2COOH·H2PO3 type ferroelectric materials. Condens. Matter Phys. 20, 43707 (2017).
<a href="https://doi.org/10.5488/CMP.20.43707">https://doi.org/10.5488/CMP.20.43707</a>
</li>
<li> I.R. Zachek, R.R. Levitskii, A.S. Vdovych. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric. J. Phys. Study 21, 1704 (2017).
</li>
<li> R. Tchukvinskyi, R. Cach, Z. Czapla, S. Dacko. Characterization of ferroelectric phase transition in GPI crystal. Phys.stat. sol. (a) 165, 309 (1998).
<a href="https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<309::AID-PSSA309>3.0.CO;2-U">https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<309::AID-PSSA309>3.0.CO;2-U</a>
</li>
<li> F. Shikanai, M. Yamasaki, M. Komukae, T. Osaka. Structural study of partially deuterated glycinium phosphite in the paraelectric phase. J. Phys. Soc. Jpn. 72, 325 (2003).
<a href="https://doi.org/10.1143/JPSJ.72.325">https://doi.org/10.1143/JPSJ.72.325</a>
</li>
<li> J. Nayeem, T. Kikuta, N. Nakatani, F. Matsui, S.N. Takeda, K. Hattori, H. Daimon. Ferroelectric phase transition character of glycine phosphite. Ferroelectrics, 332, 13 (2006).
<a href="https://doi.org/10.1080/00150190500309064">https://doi.org/10.1080/00150190500309064</a>
</li>
<li> M. Wiesner. Piezoelectric properties of GPI crystals. Phys.stat. sol. (b) 238, 68 (2003).
<a href="https://doi.org/10.1002/pssb.200301750">https://doi.org/10.1002/pssb.200301750</a>
</li>
<li> J. Nayeem, H. Wakabayashi, T. Kikuta, T. Yamazaki, N. Nakatani. Ferroelectric properties of deuterated glycine phosphite. Ferroelectrics, 269, 153 (2002).
<a href="https://doi.org/10.1080/713716051">https://doi.org/10.1080/713716051</a>
</li>
<li> A. Deepthy, H.L. Bhat, A.V. Alex, J. Philip. Ultrasonic investigation of elastic properties and a phase transition in ferroelectric glycine phosphite NH3CH2COOH3PO3 single crystals. Phys. Rev. B 62, 8752 (2000).
<a href="https://doi.org/10.1103/PhysRevB.62.8752">https://doi.org/10.1103/PhysRevB.62.8752</a>
</li>

Downloads

Published

2018-06-18

How to Cite

Vdovych, A. S., Zachek, I. R., & Levitskii, R. R. (2018). Influence of Longitudinal Electric Field on Thermodynamic Properties of NH3CH2COOH·H2PO3 Ferroelectric. Ukrainian Journal of Physics, 63(4), 350. https://doi.org/10.15407/ujpe63.4.350

Issue

Section

Physics of magnetic phenomena and physics of ferroics