Band Gap Change of Bulk ZnSxSe1–x Semiconductors by Controlling the Sulfur Content

Authors

  • O. G. Trubaieva Institute for Scintillation Materials of the NAS of Ukraine (60, Nauky Ave., Kharkiv 61072, Ukraine)
  • A. I. Lalayants Institute for Scintillation Materials of the NAS of Ukraine (60, Nauky Ave., Kharkiv 61072, Ukraine)
  • M. A. Chaika Institute for Single Crystals of the NAS of Ukraine (60, Nauky Ave., Kharkiv 61072, Ukraine)

DOI:

https://doi.org/10.15407/ujpe63.01.0033

Keywords:

ZnSxSe1−x bulk crystals, direct transitions, indirect transitions, band gap

Abstract

ZnSxSe1−x bulk crystals were grown by the Bridgman–Stockbarger method. The transmittance of different samples in the range from 67% to 56% at la = 1100 nm (for 4-mm samples) indicates a high optical quality of the crystals. No new states were revealed at the sulfur incorporation, and the band gap depends on the composition. The optical band gap of ZnSxSe1−x bulk crystals varies from 2.59 to 2.78 eV for direct transitions and from 2.49 to 2.70 eV for indirect transitions.

References

<ol>
<li>M. Emam-Ismail, M. El-Hagary, E. Ramadan et al. Influence of y-irradiation on optical parameters of electron beam evaporated ZnSe1?xTex nanocrystalline thin films. Radiat Eff. Defects Solids. 169 (1), 61 (2014).
<a href="https://doi.org/10.1080/10420150.2013.811505">https://doi.org/10.1080/10420150.2013.811505</a>
</li>
<li>P. Shotanus, P. Dorenbos, V. Ryzhikov. Detection of CdS (Te) and ZnSe (Te) scintillation light with silicon photodiodes. IEEE Trans. Nucl. Sci. 39 (4), 546 (1992).
<a href="https://doi.org/10.1109/23.159663">https://doi.org/10.1109/23.159663</a>
</li>
<li>T. Homann, U. Hotje, M. Binnewies et al. Compositiondependent band gap in ZnSxSe1?x a combined experimental and theoretical study. Solid State Sci. 8 (1), 44 (2006).
<a href="https://doi.org/10.1016/j.solidstatesciences.2005.08.015">https://doi.org/10.1016/j.solidstatesciences.2005.08.015</a>
</li>
<li>L.S. Lai, I.K. Sou, C.W. Law et al. ZnSSe-based ultraviolet photodiodes with extremely high detectivity. Opt. Mater. 23 (1), 21 (2003).
<a href="https://doi.org/10.1016/S0925-3467(03)00053-3">https://doi.org/10.1016/S0925-3467(03)00053-3</a>
</li>
<li>G. Kudlek, N. Presser, J. Gutowski et al. Comparative optical investigations of ZnSe/GaAs epilayers grown by molecular beam and hot-wall epitaxy. J. Appl. Phys. 68 (11), 5630 (1990).
<a href="https://doi.org/10.1063/1.346975">https://doi.org/10.1063/1.346975</a>
</li>
<li>C.T. Hsu. Growth of ZnSxSe1?x layers on Si substrates by atomic layer epitaxy. Mater. Chem. Phys. 58 (1), 6 (1999).
<a href="https://doi.org/10.1016/S0254-0584(98)00238-7">https://doi.org/10.1016/S0254-0584(98)00238-7</a>
</li>
<li>J.H. Song, E.D. Sim, K.S. Baek et al. Optical properties of ZnSxSe1?x (x < 0.18) random and ordered alloys grown by metalorganic atomic layer epitaxy. J. Cryst. Growth. 214, 460 (2000).
<a href="https://doi.org/10.1016/S0022-0248(00)00130-5">https://doi.org/10.1016/S0022-0248(00)00130-5</a>
</li>
<li>P. Prete, N. Lovergine, S. Petroni et al. Functional validation of novel Se and S alkyl precursors for the low temperature pyrolytic MOVPE growth of ZnSe, ZnS and ZnSSe. Mater. Chem. Phys. 66 (2) (2000).
<a href="https://doi.org/10.1016/S0254-0584(00)00317-5">https://doi.org/10.1016/S0254-0584(00)00317-5</a>
</li>
<li>M. Ambrico, G. Perna, D. Smaldone et al. Structural and optical parameters of films deposited on quartz substrates by laser ablation. Semicond. Sci. Technol. 13 (12), 1446 (1998).
<a href="https://doi.org/10.1088/0268-1242/13/12/021">https://doi.org/10.1088/0268-1242/13/12/021</a>
</li>
<li> L. Atroshchenko, L. Gal'chinetskii, S. Galkin et al. Structure defects and phase transition in tellurium-doped ZnSe crystals. J. Cryst. Growth. 198, 292 (1999).
<a href="https://doi.org/10.1016/S0022-0248(98)01235-4">https://doi.org/10.1016/S0022-0248(98)01235-4</a>
</li>
<li> L. Atroshchenko, L. Gal'chinetskii, S. Galkin et al. Influence of the growth parameters and subsequent annealing upon structural perfectness, optical and mechanical properties of ZnSe1?xTex crystals. Func. Mat. 8 (3), 455 (2001).
</li>
<li> R. Hussein, O. Pages, F. Firszt et al. Near-forward Raman study of a phonon-polariton reinforcement regime in the Zn(Se,S) alloy. J. Appl. Phys. 116 (8), 1 (2014).
<a href="https://doi.org/10.1063/1.4893322">https://doi.org/10.1063/1.4893322</a>
</li>
<li> R. Hussein, O. Pages, S. Doyen-Schuler et al. Percolationtype multi-phonon pattern of Zn(Se,S): Backward/forward Raman scattering and ab initio calculations. J. Alloys Compd. 644, 704 (2015).
<a href="https://doi.org/10.1016/j.jallcom.2015.04.078">https://doi.org/10.1016/j.jallcom.2015.04.078</a>
</li>
<li> R. Hussein, O. Pages, A. Polian et al. Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations. J. Phys. Condens. Matter. 28 (20), 5401 (2016).
</li>
<li> S. Venkatachalam, D. Mangalaraj, S. Narayandass et al. The effect of nitrogen ion implantation on the structural, optical and electrical properties of ZnSe thin films. Semicond. Sci. Tech. 21 (12), 1661 (2006).
<a href="https://doi.org/10.1088/0268-1242/21/12/027">https://doi.org/10.1088/0268-1242/21/12/027</a>
</li>
<li> Y. Chen, J. Li, X. Yang et al. Band gap modulation of the IV, III–V, and II–VI semiconductors by controlling the solid size and dimension and the temperature of operation. J. Phys. Chem. C. 115 (47), 23338 (2011).
<a href="https://doi.org/10.1021/jp209933v">https://doi.org/10.1021/jp209933v</a>
</li>
<li> Y Alghamdi. Composition and band gap controlled AACVD of ZnSe and ZnSxSe1?x thin films using novel single source precursors Mat. Sci. Appl. 8 (10), 726 (2017).
</li>
<li> B. Pejova, B. Abay, L. Bineva et al. Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin films. J. Phys. Chem. C. 114 (36), 15280 (2010).
<a href="https://doi.org/10.1021/jp102773z">https://doi.org/10.1021/jp102773z</a>
</li>
<li> D.B. Judd. Fresnel reflection of diffusely incident light. J. Res. Natl. Bur. Stand. 29 (5), 329 (1942).
<a href="https://doi.org/10.6028/jres.029.017">https://doi.org/10.6028/jres.029.017</a>
</li>
<li> R.H. Bube. Photoconductivity of Solids (Wiley, 1960).
</li>
<li> R. Summitt, J.A. Marley, N.F. Borrelli et al. The ultraviolet absorption edge of stannic oxide (SnO2). J. Phys. Chem. Solids. 25 (12), 1465 (1964).
<a href="https://doi.org/10.1016/0022-3697(64)90063-0">https://doi.org/10.1016/0022-3697(64)90063-0</a>
</li>
<li> J.E. Bernard, A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys. Rev. B 36 (6), 3199 (1987).
<a href="https://doi.org/10.1103/PhysRevB.36.3199">https://doi.org/10.1103/PhysRevB.36.3199</a>
</li>
<li> A.A. El-Shazly, M.M. El-Naby, M.A. Kenawy et al. Optical properties of ternary ZnSxSe1?x polycrystalline thin films. Natl. Bur. Stand. 36 (1), 51 (1985).
</li>
<li> S. Larach, R.E. Shrader, C.F. Stocker. Anomalous variation of band gap with composition in zinc sulfo-and selenotellurides. Phys. Rev. 108 (3), 587 (1957).
<a href="https://doi.org/10.1103/PhysRev.108.587">https://doi.org/10.1103/PhysRev.108.587</a>
</li>
<li> A. Ebina, E. Fukunaga, T. Takahashi. Variation with composition of the E0 and E0+?0 gaps in ZnSxSe1?x alloys. Phys. Rev. B 10 (6), 2495 (1974).
<a href="https://doi.org/10.1103/PhysRevB.10.2495">https://doi.org/10.1103/PhysRevB.10.2495</a>
</li>
<li> L.G. Suslina, D.L. Fedorov, S.G. Konnikov et al. Dependence of forbidden-band width on composition of ZnSxSe1?x mixed-crystals. Sov. Phys. Semicond. 11 (10), 1132 (1997).
</li>
<li> A.V. Novoselova, V.B. Lazarev (Eds.). Physical and Chemical Properties of Semiconductors (Nauka, 1979) (in Russian).
</li>
<li> P. Herve, L.K. Vandamme. General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35 (4), 609 (1994).
<a href="https://doi.org/10.1016/1350-4495(94)90026-4">https://doi.org/10.1016/1350-4495(94)90026-4</a></li></ol>

Downloads

Published

2018-02-01

How to Cite

Trubaieva, O. G., Lalayants, A. I., & Chaika, M. A. (2018). Band Gap Change of Bulk ZnSxSe1–x Semiconductors by Controlling the Sulfur Content. Ukrainian Journal of Physics, 63(1), 33–37. https://doi.org/10.15407/ujpe63.01.0033

Issue

Section

Semiconductors and dielectrics