Aggregation Processes in Hybrid Nanosystem Polymer/Nanosilver/Cisplatin
DOI:
https://doi.org/10.15407/ujpe63.6.513Keywords:
silver nanoparticles, branched polymer, polyelectrolyte, cisplatin, aggregationAbstract
Hybrid nanosystems consisting of star-like copolymer Dextran-graft-Polyacrylamide in the anionic form (D-g-PAA(PE)), silver nanoparticles (AgNPs), and cisplatin (cis-Pt) have been synthesized in water and characterized by TEM, DLS, FTIR, and UV-Vis spectroscopies. It is shown that cis-Pt forms a complex with carboxylate groups of the polymer. For the ternary system Polymer/AgNPs/cis-Pt, a change in the hydrophilic-hydrophobic balance of a polymer molecule (due to the complexation with cis-Pt) and the aggregation of macromolecules, as well as to some agglomeration AgNPs, are revealed. The decrease of the antitumor efficiency of the hybrid ternary nanosystem Polymer/AgNPs/cis-Pt in comparison with the Polymer/cis-Pt system is discussed.
References
<li>R. Jadia, C. Scandore, P. Rai. Nanoparticles for effective combination therapy of cancer. Intern. J. Nanotech. Nanomed. 1, 1 (2016).
</li>
<li>X. Xu, W. Ho, X. Zhang, N. Bertrand, O. Farokhzad. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 21, 223 (2015).
<a href="https://doi.org/10.1016/j.molmed.2015.01.001">https://doi.org/10.1016/j.molmed.2015.01.001</a>
</li>
<li>C.M. Hu, S. Aryal, L. Zhang. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323 (2000).
<a href="https://doi.org/10.4155/tde.10.13">https://doi.org/10.4155/tde.10.13</a>
</li>
<li>E. Gianasi, M. Wasil, E.G. Evagorou, A. Keddle, G. Wilson, R. Duncan. HPMA copolymer platinates as novel antitumour agents: In vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer 35, 994 (1999).
<a href="https://doi.org/10.1016/S0959-8049(99)00030-1">https://doi.org/10.1016/S0959-8049(99)00030-1</a>
</li>
<li>U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013).
<a href="https://doi.org/10.1158/0008-5472.CAN-12-4561">https://doi.org/10.1158/0008-5472.CAN-12-4561</a>
</li>
<li>A.-M. Florea, D. Busselberg. Cisplatin as an antitumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancer 3, 1351 (2011).
<a href="https://doi.org/10.3390/cancers3011351">https://doi.org/10.3390/cancers3011351</a>
</li>
<li>X.P. Dong, T.H. Xiao, H. Dong, N. Jiang, X.G. Zhao. Endostar combined with cisplatin inhibits tumor growth and lymphatic metastasis of Lewis lung carcinoma xenografts in mice. Asian Pac. J. Cancer Prev. 14, 3079 (2013).
<a href="https://doi.org/10.7314/APJCP.2013.14.5.3079">https://doi.org/10.7314/APJCP.2013.14.5.3079</a>
</li>
<li>H. Gheybia, H. Niknejadb, A.A. Entezamia. Polymermetal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Designed Monomers and Polymers 17, 334 (2014).
<a href="https://doi.org/10.1080/15685551.2013.840508">https://doi.org/10.1080/15685551.2013.840508</a>
</li>
<li>T. Boulikas, M. Vougiouka. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. Oncol. Rep. 11, 559 (2004).
<a href="https://doi.org/10.3892/or.11.3.559">https://doi.org/10.3892/or.11.3.559</a>
</li>
<li> D. Shaloam, P.B. Tchounwou. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 364 (2014).
</li>
<li> S.J. Lippard. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discovery 4, 307 (2005).
<a href="https://doi.org/10.1038/nrd1691">https://doi.org/10.1038/nrd1691</a>
</li>
<li> M. Galanski, V.B. Arion, M.A. Jakupec, B.K. Keppler. Recent developments in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des. 9, 2078 (2003).
<a href="https://doi.org/10.2174/1381612033454180">https://doi.org/10.2174/1381612033454180</a>
</li>
<li> G. Mattheolabakis, E. Taoufik, S. Haralambous, M.L. Roberts, K. Avgoustakis. In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur. J. Pharm. Biopharm. 71, 190 (2009).
<a href="https://doi.org/10.1016/j.ejpb.2008.09.011">https://doi.org/10.1016/j.ejpb.2008.09.011</a>
</li>
<li> S. Aryal, C.M.J. Hu, L. Zhang. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4, 251 (2010).
<a href="https://doi.org/10.1021/nn9014032">https://doi.org/10.1021/nn9014032</a>
</li>
<li> K. Osada, R.J. Christie, K. Kataoka. Polymeric micelles from polyethylene glycol-polyamino acid block copolymer for drug and gene delivery. J. R. Soc. Interface 6, S325 (2009).
<a href="https://doi.org/10.1098/rsif.2008.0547.focus">https://doi.org/10.1098/rsif.2008.0547.focus</a>
</li>
<li> S.S. Kulthe, Y.M. Choudhari, N.N. Inamdar, V. Mourya. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym. 15, 465 (2012).
<a href="https://doi.org/10.1080/1385772X.2012.688328">https://doi.org/10.1080/1385772X.2012.688328</a>
</li>
<li> M. Baba, Y. Matsumoto, A. Kashio, H. Cabral, N. Nishiyama, K. Kataoka, T. Yamasoba. Micellization of cisplatin NC-6004 reduces its ototoxicity in guinea pigs. J. Controlled Release 157, 112 (2012).
<a href="https://doi.org/10.1016/j.jconrel.2011.07.026">https://doi.org/10.1016/j.jconrel.2011.07.026</a>
</li>
<li> K.J. Haxton, H.M. Burt. Hyperbranched polymers for controlled release of cisplatin. Dalton Trans. 5872 (2008).
<a href="https://doi.org/10.1039/b809949a">https://doi.org/10.1039/b809949a</a>
</li>
<li> C. Wang, Y. Gong, N. S. Fan, Liu, S. Luo, J. Yu, J. Huang. Fabrication of polymer-platinumII complex nanomicelle from mPEG-g-alpha, beta-poly[N-amino acidyl-DL-aspar-tamide] and cis-dichlorodiammine platinumII and its cytotoxicity. Colloids Surf. B 70, 84 (2009).
<a href="https://doi.org/10.1016/j.colsurfb.2008.12.012">https://doi.org/10.1016/j.colsurfb.2008.12.012</a>
</li>
<li> W. Zhu, Y. Li, L. Liu, W. Zhang, Y. Chen, F. Xi. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J. Biomed. Mater. Res. A 96, 330 (2011).
<a href="https://doi.org/10.1002/jbm.a.32985">https://doi.org/10.1002/jbm.a.32985</a>
</li>
<li> A. Kowalczuk, E. Stoyanova, V. Mitova, P. Shestakova, G. Momekov, D. Momekova, N. Koseva. Star-shaped nanoconjugates of cisplatin with high drug payload. Int. J. Pharm. 404, 220 (2011).
<a href="https://doi.org/10.1016/j.ijpharm.2010.11.004">https://doi.org/10.1016/j.ijpharm.2010.11.004</a>
</li>
<li> G.S. Grest, L.J. Fetters, J.S. Huang. Star polymers: Experiment, theory, and simulation. Adv. Chem. Phys. 94, 67 (1996).
<a href="https://doi.org/10.1002/9780470141533.ch2">https://doi.org/10.1002/9780470141533.ch2</a>
</li>
<li> M. Ballauff. Spherical polyelectrolyte brushes. Polym. Sci. 32, 1135 (2007).
<a href="https://doi.org/10.1016/j.progpolymsci.2007.05.002">https://doi.org/10.1016/j.progpolymsci.2007.05.002</a>
</li>
<li> J.M. Ren, T.G. McKenzie, Q. Fu, H.H. Wong, J. Xu et al. Star Polymers. Chem. Rev. 116, 6743 (2016).
<a href="https://doi.org/10.1021/acs.chemrev.6b00008">https://doi.org/10.1021/acs.chemrev.6b00008</a>
</li>
<li> N.V. Kutsevol, V.A. Chumachenko, M. Rawiso, V.F. Shkodich, O.V. Stoyanov. Star-like polymers dextran-polyacrylamide: The prospects of application for nanotechnology. J. Str. Chem. 56, 1016 (2015).
<a href="https://doi.org/10.1134/S0022476615050200">https://doi.org/10.1134/S0022476615050200</a>
</li>
<li> O.A. Yeshchenko, N.V. Kutsevol, A.P. Naumenko. Light-induced heating of gold nanoparticles in colloidal solution: Dependence on detuning from surface plasmon resonance. Plasmonics 11, 345 (2016).
<a href="https://doi.org/10.1007/s11468-015-0034-z">https://doi.org/10.1007/s11468-015-0034-z</a>
</li>
<li> N. Kutsevol, M. Bezuglyi, M. Rawiso, T. Bezugla. Star-like destran-graft-polyacrylamide-co-polyacrylic acid copolymers. Macromol. Symp. 335, 12 (2014).
<a href="https://doi.org/10.1002/masy.201200115">https://doi.org/10.1002/masy.201200115</a>
</li>
<li> N. Kutsevol, R. Soushko, A. Shyichuk, N. Melnyk. Flocculation behaviour of polymer brushes of various nanostructure. Mol. Liq. Mol. Cryst. 483, 71 (2008).
<a href="https://doi.org/10.1080/15421400801900433">https://doi.org/10.1080/15421400801900433</a>
</li>
<li> G. Telegeev, N. Kutsevol, V. Chumachenko, A. Naumenko, P. Telegeeva, S. Filipchenko, Yu. Harahuts. Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. Intern. J. Pol. Sci., 2017.
</li>
<li> J. Liu, Y. Zhao, Q. Guo, Z. Wang, H. Wang, Y. Yang, et al. TAT-modified nanosilver for combating multidrug-resistant cancer Biomaterials 33, 6155 (2012).
<a href="https://doi.org/10.1016/j.biomaterials.2012.05.035">https://doi.org/10.1016/j.biomaterials.2012.05.035</a>
</li>
<li> R. Foldbjerg, D.A. Dang, H. Autrup. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743e50 (2011).
</li>
<li> M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal, S. Gurunathan. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753e62 (2010).
</li>
<li> P. Sanpui, A. Chattopadhyay, S.S. Ghosh. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces 3, 218e28 (2011).
</li>
<li> V. Chumachenko, N. Kutsevol, Yu. Harahuts, M. Rawiso, A. Marinin, L. Bulavin. Star-like Dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J. Mol. Liq. 235, 77 (2017).
<a href="https://doi.org/10.1016/j.molliq.2017.02.098">https://doi.org/10.1016/j.molliq.2017.02.098</a>
</li>
<li> B. Koleva, T. Kolev, M. Spiteller. Spectroscopic analysis and structural elucidation of small peptides – experimental and theoretical tools. Book chapter, edited by J.C. Taylor, Advances in Chemistry Research 3, 675 (2010).
</li>
<li> Y. Ramos, C. Fern’andez, L. Fernandez, M. Bataller, E. Veliz, R. Small. Optimization of a HPLC procedure for simultaneous determination of cisplatin and the complex cis, cis, trans-diamminedichlorodihydroxoplatinumIV in aqueous solutions. Quimica Nova 34, 1450 (2011).
<a href="https://doi.org/10.1590/S0100-40422011000800026">https://doi.org/10.1590/S0100-40422011000800026</a>
</li>
<li> http://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/silver-nanoparticles.html
</li>
<li> K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Appl. Catalysis B Environ. 30, 151 (2001).
<a href="https://doi.org/10.1016/S0926-3373(00)00229-0">https://doi.org/10.1016/S0926-3373(00)00229-0</a>
</li>
<li> T. Linnert, P. Mulvaney, A. Henglein, H. Weller. Long-lived nonmetallic silver clusters in aqueous solution: Preparation and photolysis. J. Am. Chem. Soc. 112, 4657 (1990).
<a href="https://doi.org/10.1021/ja00168a005">https://doi.org/10.1021/ja00168a005</a>
</li>
<li> C. Noguez. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 111, 3806 (2007).
<a href="https://doi.org/10.1021/jp066539m">https://doi.org/10.1021/jp066539m</a>
</li>
<li> V. Amendola, O.M. Bakr, F. Stellacci. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 5, 85 (2010).
<a href="https://doi.org/10.1007/s11468-009-9120-4">https://doi.org/10.1007/s11468-009-9120-4</a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.