Aggregation Processes in Hybrid Nanosystem Polymer/Nanosilver/Cisplatin

Authors

  • N. Kutsevol Taras Shevchenko National University of Kyiv
  • A. Naumenko Taras Shevchenko National University of Kyiv
  • V. Chumachenko Taras Shevchenko National University of Kyiv
  • O. Yeshchenko Taras Shevchenko National University of Kyiv
  • Yu. Harahuts Taras Shevchenko National University of Kyiv
  • V. Pavlenko Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe63.6.513

Keywords:

silver nanoparticles, branched polymer, polyelectrolyte, cisplatin, aggregation

Abstract

Hybrid nanosystems consisting of star-like copolymer Dextran-graft-Polyacrylamide in the anionic form (D-g-PAA(PE)), silver nanoparticles (AgNPs), and cisplatin (cis-Pt) have been synthesized in water and characterized by TEM, DLS, FTIR, and UV-Vis spectroscopies. It is shown that cis-Pt forms a complex with carboxylate groups of the polymer. For the ternary system Polymer/AgNPs/cis-Pt, a change in the hydrophilic-hydrophobic balance of a polymer molecule (due to the complexation with cis-Pt) and the aggregation of macromolecules, as well as to some agglomeration AgNPs, are revealed. The decrease of the antitumor efficiency of the hybrid ternary nanosystem Polymer/AgNPs/cis-Pt in comparison with the Polymer/cis-Pt system is discussed.

References

<ol>
<li>R. Jadia, C. Scandore, P. Rai. Nanoparticles for effective combination therapy of cancer. Intern. J. Nanotech. Nanomed. 1, 1 (2016).
</li>
<li>X. Xu, W. Ho, X. Zhang, N. Bertrand, O. Farokhzad. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 21, 223 (2015).
<a href="https://doi.org/10.1016/j.molmed.2015.01.001">https://doi.org/10.1016/j.molmed.2015.01.001</a>
</li>
<li>C.M. Hu, S. Aryal, L. Zhang. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323 (2000).
<a href="https://doi.org/10.4155/tde.10.13">https://doi.org/10.4155/tde.10.13</a>
</li>
<li>E. Gianasi, M. Wasil, E.G. Evagorou, A. Keddle, G. Wilson, R. Duncan. HPMA copolymer platinates as novel antitumour agents: In vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer 35, 994 (1999).
<a href="https://doi.org/10.1016/S0959-8049(99)00030-1">https://doi.org/10.1016/S0959-8049(99)00030-1</a>
</li>
<li>U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013).
<a href="https://doi.org/10.1158/0008-5472.CAN-12-4561">https://doi.org/10.1158/0008-5472.CAN-12-4561</a>
</li>
<li>A.-M. Florea, D. Busselberg. Cisplatin as an antitumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancer 3, 1351 (2011).
<a href="https://doi.org/10.3390/cancers3011351">https://doi.org/10.3390/cancers3011351</a>
</li>
<li>X.P. Dong, T.H. Xiao, H. Dong, N. Jiang, X.G. Zhao. Endostar combined with cisplatin inhibits tumor growth and lymphatic metastasis of Lewis lung carcinoma xenografts in mice. Asian Pac. J. Cancer Prev. 14, 3079 (2013).
<a href="https://doi.org/10.7314/APJCP.2013.14.5.3079">https://doi.org/10.7314/APJCP.2013.14.5.3079</a>
</li>
<li>H. Gheybia, H. Niknejadb, A.A. Entezamia. Polymermetal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Designed Monomers and Polymers 17, 334 (2014).
<a href="https://doi.org/10.1080/15685551.2013.840508">https://doi.org/10.1080/15685551.2013.840508</a>
</li>
<li>T. Boulikas, M. Vougiouka. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. Oncol. Rep. 11, 559 (2004).
<a href="https://doi.org/10.3892/or.11.3.559">https://doi.org/10.3892/or.11.3.559</a>
</li>
<li> D. Shaloam, P.B. Tchounwou. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 364 (2014).
</li>
<li> S.J. Lippard. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discovery 4, 307 (2005).
<a href="https://doi.org/10.1038/nrd1691">https://doi.org/10.1038/nrd1691</a>
</li>
<li> M. Galanski, V.B. Arion, M.A. Jakupec, B.K. Keppler. Recent developments in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des. 9, 2078 (2003).
<a href="https://doi.org/10.2174/1381612033454180">https://doi.org/10.2174/1381612033454180</a>
</li>
<li> G. Mattheolabakis, E. Taoufik, S. Haralambous, M.L. Roberts, K. Avgoustakis. In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur. J. Pharm. Biopharm. 71, 190 (2009).
<a href="https://doi.org/10.1016/j.ejpb.2008.09.011">https://doi.org/10.1016/j.ejpb.2008.09.011</a>
</li>
<li> S. Aryal, C.M.J. Hu, L. Zhang. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4, 251 (2010).
<a href="https://doi.org/10.1021/nn9014032">https://doi.org/10.1021/nn9014032</a>
</li>
<li> K. Osada, R.J. Christie, K. Kataoka. Polymeric micelles from polyethylene glycol-polyamino acid block copolymer for drug and gene delivery. J. R. Soc. Interface 6, S325 (2009).
<a href="https://doi.org/10.1098/rsif.2008.0547.focus">https://doi.org/10.1098/rsif.2008.0547.focus</a>
</li>
<li> S.S. Kulthe, Y.M. Choudhari, N.N. Inamdar, V. Mourya. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym. 15, 465 (2012).
<a href="https://doi.org/10.1080/1385772X.2012.688328">https://doi.org/10.1080/1385772X.2012.688328</a>
</li>
<li> M. Baba, Y. Matsumoto, A. Kashio, H. Cabral, N. Nishiyama, K. Kataoka, T. Yamasoba. Micellization of cisplatin NC-6004 reduces its ototoxicity in guinea pigs. J. Controlled Release 157, 112 (2012).
<a href="https://doi.org/10.1016/j.jconrel.2011.07.026">https://doi.org/10.1016/j.jconrel.2011.07.026</a>
</li>
<li> K.J. Haxton, H.M. Burt. Hyperbranched polymers for controlled release of cisplatin. Dalton Trans. 5872 (2008).
<a href="https://doi.org/10.1039/b809949a">https://doi.org/10.1039/b809949a</a>
</li>
<li> C. Wang, Y. Gong, N. S. Fan, Liu, S. Luo, J. Yu, J. Huang. Fabrication of polymer-platinumII complex nanomicelle from mPEG-g-alpha, beta-poly[N-amino acidyl-DL-aspar-tamide] and cis-dichlorodiammine platinumII and its cytotoxicity. Colloids Surf. B 70, 84 (2009).
<a href="https://doi.org/10.1016/j.colsurfb.2008.12.012">https://doi.org/10.1016/j.colsurfb.2008.12.012</a>
</li>
<li> W. Zhu, Y. Li, L. Liu, W. Zhang, Y. Chen, F. Xi. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J. Biomed. Mater. Res. A 96, 330 (2011).
<a href="https://doi.org/10.1002/jbm.a.32985">https://doi.org/10.1002/jbm.a.32985</a>
</li>
<li> A. Kowalczuk, E. Stoyanova, V. Mitova, P. Shestakova, G. Momekov, D. Momekova, N. Koseva. Star-shaped nanoconjugates of cisplatin with high drug payload. Int. J. Pharm. 404, 220 (2011).
<a href="https://doi.org/10.1016/j.ijpharm.2010.11.004">https://doi.org/10.1016/j.ijpharm.2010.11.004</a>
</li>
<li> G.S. Grest, L.J. Fetters, J.S. Huang. Star polymers: Experiment, theory, and simulation. Adv. Chem. Phys. 94, 67 (1996).
<a href="https://doi.org/10.1002/9780470141533.ch2">https://doi.org/10.1002/9780470141533.ch2</a>
</li>
<li> M. Ballauff. Spherical polyelectrolyte brushes. Polym. Sci. 32, 1135 (2007).
<a href="https://doi.org/10.1016/j.progpolymsci.2007.05.002">https://doi.org/10.1016/j.progpolymsci.2007.05.002</a>
</li>
<li> J.M. Ren, T.G. McKenzie, Q. Fu, H.H. Wong, J. Xu et al. Star Polymers. Chem. Rev. 116, 6743 (2016).
<a href="https://doi.org/10.1021/acs.chemrev.6b00008">https://doi.org/10.1021/acs.chemrev.6b00008</a>
</li>
<li> N.V. Kutsevol, V.A. Chumachenko, M. Rawiso, V.F. Shkodich, O.V. Stoyanov. Star-like polymers dextran-polyacrylamide: The prospects of application for nanotechnology. J. Str. Chem. 56, 1016 (2015).
<a href="https://doi.org/10.1134/S0022476615050200">https://doi.org/10.1134/S0022476615050200</a>
</li>
<li> O.A. Yeshchenko, N.V. Kutsevol, A.P. Naumenko. Light-induced heating of gold nanoparticles in colloidal solution: Dependence on detuning from surface plasmon resonance. Plasmonics 11, 345 (2016).
<a href="https://doi.org/10.1007/s11468-015-0034-z">https://doi.org/10.1007/s11468-015-0034-z</a>
</li>
<li> N. Kutsevol, M. Bezuglyi, M. Rawiso, T. Bezugla. Star-like destran-graft-polyacrylamide-co-polyacrylic acid copolymers. Macromol. Symp. 335, 12 (2014).
<a href="https://doi.org/10.1002/masy.201200115">https://doi.org/10.1002/masy.201200115</a>
</li>
<li> N. Kutsevol, R. Soushko, A. Shyichuk, N. Melnyk. Flocculation behaviour of polymer brushes of various nanostructure. Mol. Liq. Mol. Cryst. 483, 71 (2008).
<a href="https://doi.org/10.1080/15421400801900433">https://doi.org/10.1080/15421400801900433</a>
</li>
<li> G. Telegeev, N. Kutsevol, V. Chumachenko, A. Naumenko, P. Telegeeva, S. Filipchenko, Yu. Harahuts. Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. Intern. J. Pol. Sci., 2017.
</li>
<li> J. Liu, Y. Zhao, Q. Guo, Z. Wang, H. Wang, Y. Yang, et al. TAT-modified nanosilver for combating multidrug-resistant cancer Biomaterials 33, 6155 (2012).
<a href="https://doi.org/10.1016/j.biomaterials.2012.05.035">https://doi.org/10.1016/j.biomaterials.2012.05.035</a>
</li>
<li> R. Foldbjerg, D.A. Dang, H. Autrup. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743e50 (2011).
</li>
<li> M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal, S. Gurunathan. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753e62 (2010).
</li>
<li> P. Sanpui, A. Chattopadhyay, S.S. Ghosh. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces 3, 218e28 (2011).
</li>
<li> V. Chumachenko, N. Kutsevol, Yu. Harahuts, M. Rawiso, A. Marinin, L. Bulavin. Star-like Dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J. Mol. Liq. 235, 77 (2017).
<a href="https://doi.org/10.1016/j.molliq.2017.02.098">https://doi.org/10.1016/j.molliq.2017.02.098</a>
</li>
<li> B. Koleva, T. Kolev, M. Spiteller. Spectroscopic analysis and structural elucidation of small peptides – experimental and theoretical tools. Book chapter, edited by J.C. Taylor, Advances in Chemistry Research 3, 675 (2010).
</li>
<li> Y. Ramos, C. Fern’andez, L. Fernandez, M. Bataller, E. Veliz, R. Small. Optimization of a HPLC procedure for simultaneous determination of cisplatin and the complex cis, cis, trans-diamminedichlorodihydroxoplatinumIV in aqueous solutions. Quimica Nova 34, 1450 (2011).
<a href="https://doi.org/10.1590/S0100-40422011000800026">https://doi.org/10.1590/S0100-40422011000800026</a>
</li>
<li> http://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/silver-nanoparticles.html
</li>
<li> K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Appl. Catalysis B Environ. 30, 151 (2001).
<a href="https://doi.org/10.1016/S0926-3373(00)00229-0">https://doi.org/10.1016/S0926-3373(00)00229-0</a>
</li>
<li> T. Linnert, P. Mulvaney, A. Henglein, H. Weller. Long-lived nonmetallic silver clusters in aqueous solution: Preparation and photolysis. J. Am. Chem. Soc. 112, 4657 (1990).
<a href="https://doi.org/10.1021/ja00168a005">https://doi.org/10.1021/ja00168a005</a>
</li>
<li> C. Noguez. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 111, 3806 (2007).
<a href="https://doi.org/10.1021/jp066539m">https://doi.org/10.1021/jp066539m</a>
</li>
<li> V. Amendola, O.M. Bakr, F. Stellacci. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 5, 85 (2010).
<a href="https://doi.org/10.1007/s11468-009-9120-4">https://doi.org/10.1007/s11468-009-9120-4</a></li>

Downloads

Published

2018-07-12

How to Cite

Kutsevol, N., Naumenko, A., Chumachenko, V., Yeshchenko, O., Harahuts, Y., & Pavlenko, V. (2018). Aggregation Processes in Hybrid Nanosystem Polymer/Nanosilver/Cisplatin. Ukrainian Journal of Physics, 63(6), 513. https://doi.org/10.15407/ujpe63.6.513

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)