Aggregation Processes in Hybrid Nanosystem Polymer/Nanosilver/Cisplatin

  • N. Kutsevol Taras Shevchenko National University of Kyiv
  • A. Naumenko Taras Shevchenko National University of Kyiv
  • V. Chumachenko Taras Shevchenko National University of Kyiv
  • O. Yeshchenko Taras Shevchenko National University of Kyiv
  • Yu. Harahuts Taras Shevchenko National University of Kyiv
  • V. Pavlenko Taras Shevchenko National University of Kyiv
Keywords: silver nanoparticles, branched polymer, polyelectrolyte, cisplatin, aggregation

Abstract

Hybrid nanosystems consisting of star-like copolymer Dextran-graft-Polyacrylamide in the anionic form (D-g-PAA(PE)), silver nanoparticles (AgNPs), and cisplatin (cis-Pt) have been synthesized in water and characterized by TEM, DLS, FTIR, and UV-Vis spectroscopies. It is shown that cis-Pt forms a complex with carboxylate groups of the polymer. For the ternary system Polymer/AgNPs/cis-Pt, a change in the hydrophilic-hydrophobic balance of a polymer molecule (due to the complexation with cis-Pt) and the aggregation of macromolecules, as well as to some agglomeration AgNPs, are revealed. The decrease of the antitumor efficiency of the hybrid ternary nanosystem Polymer/AgNPs/cis-Pt in comparison with the Polymer/cis-Pt system is discussed.

References


  1. R. Jadia, C. Scandore, P. Rai. Nanoparticles for effective combination therapy of cancer. Intern. J. Nanotech. Nanomed. 1, 1 (2016).

  2. X. Xu, W. Ho, X. Zhang, N. Bertrand, O. Farokhzad. Cancer nanomedicine: From targeted delivery to combination therapy. Trends Mol. Med. 21, 223 (2015).
    https://doi.org/10.1016/j.molmed.2015.01.001

  3. C.M. Hu, S. Aryal, L. Zhang. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323 (2000).
    https://doi.org/10.4155/tde.10.13

  4. E. Gianasi, M. Wasil, E.G. Evagorou, A. Keddle, G. Wilson, R. Duncan. HPMA copolymer platinates as novel antitumour agents: In vitro properties, pharmacokinetics and antitumour activity in vivo. Eur. J. Cancer 35, 994 (1999).
    https://doi.org/10.1016/S0959-8049(99)00030-1

  5. U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412 (2013).
    https://doi.org/10.1158/0008-5472.CAN-12-4561

  6. A.-M. Florea, D. Busselberg. Cisplatin as an antitumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancer 3, 1351 (2011).
    https://doi.org/10.3390/cancers3011351

  7. X.P. Dong, T.H. Xiao, H. Dong, N. Jiang, X.G. Zhao. Endostar combined with cisplatin inhibits tumor growth and lymphatic metastasis of Lewis lung carcinoma xenografts in mice. Asian Pac. J. Cancer Prev. 14, 3079 (2013).
    https://doi.org/10.7314/APJCP.2013.14.5.3079

  8. H. Gheybia, H. Niknejadb, A.A. Entezamia. Polymermetal complex nanoparticles-containing cisplatin and amphiphilic block copolymer for anticancer drug delivery. Designed Monomers and Polymers 17, 334 (2014).
    https://doi.org/10.1080/15685551.2013.840508

  9. T. Boulikas, M. Vougiouka. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs. Oncol. Rep. 11, 559 (2004).
    https://doi.org/10.3892/or.11.3.559

  10. D. Shaloam, P.B. Tchounwou. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 364 (2014).

  11. S.J. Lippard. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discovery 4, 307 (2005).
    https://doi.org/10.1038/nrd1691

  12. M. Galanski, V.B. Arion, M.A. Jakupec, B.K. Keppler. Recent developments in the field of tumor-inhibiting metal complexes. Curr. Pharm. Des. 9, 2078 (2003).
    https://doi.org/10.2174/1381612033454180

  13. G. Mattheolabakis, E. Taoufik, S. Haralambous, M.L. Roberts, K. Avgoustakis. In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles. Eur. J. Pharm. Biopharm. 71, 190 (2009).
    https://doi.org/10.1016/j.ejpb.2008.09.011

  14. S. Aryal, C.M.J. Hu, L. Zhang. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4, 251 (2010).
    https://doi.org/10.1021/nn9014032

  15. K. Osada, R.J. Christie, K. Kataoka. Polymeric micelles from polyethylene glycol-polyamino acid block copolymer for drug and gene delivery. J. R. Soc. Interface 6, S325 (2009).
    https://doi.org/10.1098/rsif.2008.0547.focus

  16. S.S. Kulthe, Y.M. Choudhari, N.N. Inamdar, V. Mourya. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym. 15, 465 (2012).
    https://doi.org/10.1080/1385772X.2012.688328

  17. M. Baba, Y. Matsumoto, A. Kashio, H. Cabral, N. Nishiyama, K. Kataoka, T. Yamasoba. Micellization of cisplatin NC-6004 reduces its ototoxicity in guinea pigs. J. Controlled Release 157, 112 (2012).
    https://doi.org/10.1016/j.jconrel.2011.07.026

  18. K.J. Haxton, H.M. Burt. Hyperbranched polymers for controlled release of cisplatin. Dalton Trans. 5872 (2008).
    https://doi.org/10.1039/b809949a

  19. C. Wang, Y. Gong, N. S. Fan, Liu, S. Luo, J. Yu, J. Huang. Fabrication of polymer-platinumII complex nanomicelle from mPEG-g-alpha, beta-poly[N-amino acidyl-DL-aspar-tamide] and cis-dichlorodiammine platinumII and its cytotoxicity. Colloids Surf. B 70, 84 (2009).
    https://doi.org/10.1016/j.colsurfb.2008.12.012

  20. W. Zhu, Y. Li, L. Liu, W. Zhang, Y. Chen, F. Xi. Biamphiphilic triblock copolymer micelles as a multifunctional platform for anticancer drug delivery. J. Biomed. Mater. Res. A 96, 330 (2011).
    https://doi.org/10.1002/jbm.a.32985

  21. A. Kowalczuk, E. Stoyanova, V. Mitova, P. Shestakova, G. Momekov, D. Momekova, N. Koseva. Star-shaped nanoconjugates of cisplatin with high drug payload. Int. J. Pharm. 404, 220 (2011).
    https://doi.org/10.1016/j.ijpharm.2010.11.004

  22. G.S. Grest, L.J. Fetters, J.S. Huang. Star polymers: Experiment, theory, and simulation. Adv. Chem. Phys. 94, 67 (1996).
    https://doi.org/10.1002/9780470141533.ch2

  23. M. Ballauff. Spherical polyelectrolyte brushes. Polym. Sci. 32, 1135 (2007).
    https://doi.org/10.1016/j.progpolymsci.2007.05.002

  24. J.M. Ren, T.G. McKenzie, Q. Fu, H.H. Wong, J. Xu et al. Star Polymers. Chem. Rev. 116, 6743 (2016).
    https://doi.org/10.1021/acs.chemrev.6b00008

  25. N.V. Kutsevol, V.A. Chumachenko, M. Rawiso, V.F. Shkodich, O.V. Stoyanov. Star-like polymers dextran-polyacrylamide: The prospects of application for nanotechnology. J. Str. Chem. 56, 1016 (2015).
    https://doi.org/10.1134/S0022476615050200

  26. O.A. Yeshchenko, N.V. Kutsevol, A.P. Naumenko. Light-induced heating of gold nanoparticles in colloidal solution: Dependence on detuning from surface plasmon resonance. Plasmonics 11, 345 (2016).
    https://doi.org/10.1007/s11468-015-0034-z

  27. N. Kutsevol, M. Bezuglyi, M. Rawiso, T. Bezugla. Star-like destran-graft-polyacrylamide-co-polyacrylic acid copolymers. Macromol. Symp. 335, 12 (2014).
    https://doi.org/10.1002/masy.201200115

  28. N. Kutsevol, R. Soushko, A. Shyichuk, N. Melnyk. Flocculation behaviour of polymer brushes of various nanostructure. Mol. Liq. Mol. Cryst. 483, 71 (2008).
    https://doi.org/10.1080/15421400801900433

  29. G. Telegeev, N. Kutsevol, V. Chumachenko, A. Naumenko, P. Telegeeva, S. Filipchenko, Yu. Harahuts. Dextran-polyacrylamide as matrices for creation of anticancer nanocomposite. Intern. J. Pol. Sci., 2017.

  30. J. Liu, Y. Zhao, Q. Guo, Z. Wang, H. Wang, Y. Yang, et al. TAT-modified nanosilver for combating multidrug-resistant cancer Biomaterials 33, 6155 (2012).
    https://doi.org/10.1016/j.biomaterials.2012.05.035

  31. R. Foldbjerg, D.A. Dang, H. Autrup. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743e50 (2011).

  32. M.I. Sriram, S.B.M. Kanth, K. Kalishwaralal, S. Gurunathan. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int. J. Nanomedicine 5, 753e62 (2010).

  33. P. Sanpui, A. Chattopadhyay, S.S. Ghosh. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces 3, 218e28 (2011).

  34. V. Chumachenko, N. Kutsevol, Yu. Harahuts, M. Rawiso, A. Marinin, L. Bulavin. Star-like Dextran-graft-PNiPAM copolymers. Effect of internal molecular structure on the phase transition. J. Mol. Liq. 235, 77 (2017).
    https://doi.org/10.1016/j.molliq.2017.02.098

  35. B. Koleva, T. Kolev, M. Spiteller. Spectroscopic analysis and structural elucidation of small peptides – experimental and theoretical tools. Book chapter, edited by J.C. Taylor, Advances in Chemistry Research 3, 675 (2010).

  36. Y. Ramos, C. Fern’andez, L. Fernandez, M. Bataller, E. Veliz, R. Small. Optimization of a HPLC procedure for simultaneous determination of cisplatin and the complex cis, cis, trans-diamminedichlorodihydroxoplatinumIV in aqueous solutions. Quimica Nova 34, 1450 (2011).
    https://doi.org/10.1590/S0100-40422011000800026

  37. http://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/silver-nanoparticles.html

  38. K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori. Silver-alumina catalysts for selective reduction of NO by higher hydrocarbons: Structure of active sites and reaction mechanism. Appl. Catalysis B Environ. 30, 151 (2001).
    https://doi.org/10.1016/S0926-3373(00)00229-0

  39. T. Linnert, P. Mulvaney, A. Henglein, H. Weller. Long-lived nonmetallic silver clusters in aqueous solution: Preparation and photolysis. J. Am. Chem. Soc. 112, 4657 (1990).
    https://doi.org/10.1021/ja00168a005

  40. C. Noguez. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 111, 3806 (2007).
    https://doi.org/10.1021/jp066539m

  41. V. Amendola, O.M. Bakr, F. Stellacci. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 5, 85 (2010).
    https://doi.org/10.1007/s11468-009-9120-4
Published
2018-07-12
How to Cite
Kutsevol, N., Naumenko, A., Chumachenko, V., Yeshchenko, O., Harahuts, Y., & Pavlenko, V. (2018). Aggregation Processes in Hybrid Nanosystem Polymer/Nanosilver/Cisplatin. Ukrainian Journal of Physics, 63(6), 513. https://doi.org/10.15407/ujpe63.6.513
Section
Physics of liquids and liquid systems, biophysics and medical physics