Amorphous Submicron Layer in Depletion Region: New Approach to Increase the Silicon Solar Cell Efficiency

Authors

  • A. V. Kozinetz Taras Shevchenko National University of Kyiv, Institute of High Technologies (64, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
  • V. A. Skryshevsky Taras Shevchenko National University of Kyiv, Institute of High Technologies (64, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

DOI:

https://doi.org/10.15407/ujpe63.01.0038

Keywords:

amorphized layer, space charge region, n –p silicon solar cell

Abstract

The insertion of a thin amorphized layer (AL) in the space charge region of a silicon solar cell is proposed as a way to improve the conversion efficiency due to the impurity photovoltaic effect. Previously, this approach had been applied to a cell with a layer inserted in the emitter by the ion implantation. The insertion of such layer in the space charge region is founded to be preferable, because a better control over the recombination (via energy levels in the band gap and local states of interfaces) can be achieved. The parameters of a modified device are investigated by the numerical simulation, and it is concluded that the layer parameters have a crucial influence on the cell conversion efficiency. Based on our simulation results, the optimal AL and the height of barriers are determined. In such a case, the short circuit current density is improved due to the absorption of photons with energy less than a silicon band gap of 1.12 eV in AL, whereas the open circuit voltage and fill factor remain unchanged. Theoretically, the increase in the efficiency by 1–2% is achievable. In the non-optimal case, the degradation of a short circuit current and the fill factor eliminate the positive effect of an additional photogeneration in AL.

References

<ol>
<li>G.S. Khrypunov, E.P. Chernykh, N.A. Kovtun, E.K. Belonogov. Flexible solar cells based on cadmium sulfide and telluride. Semiconductors 43, 1046 (2009).
<a href="https://doi.org/10.1134/S1063782609080156">https://doi.org/10.1134/S1063782609080156</a>
</li>
<li>M.A. Green. The path to 25% silicon solar cell efficiency: History of silicon cell and evolution. Progress in Photovoltaics 17, 320 (2009).
<a href="https://doi.org/10.1002/pip.911">https://doi.org/10.1002/pip.911</a>
</li>
<li>A. Luque. Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031303 (2011).
<a href="https://doi.org/10.1063/1.3600702">https://doi.org/10.1063/1.3600702</a>
</li>
<li>N.P. Klochko, G.S. Khrypunov, Y.O. Myagchenko, E.E. Melnychuk, V.R. Kopach, K.S. Klepikova, V.M. Lyubov, A.V. Kopach. Electrodeposited zinc oxide arrays with the moth-eye effect. Semiconductors 48, 531 (2014).
<a href="https://doi.org/10.1134/S1063782614040162">https://doi.org/10.1134/S1063782614040162</a>
</li>
<li>A.S. Brown, M.A. Green. Impurity photovoltaic effect: Fundamental energy conversion efficiency limits. J. Appl. Phys. 92, 1329 (2002).
<a href="https://doi.org/10.1063/1.1492016">https://doi.org/10.1063/1.1492016</a>
</li>
<li>M.J. Keevers, M.J. Saris, G.C. Zhang, J. Zhao, M.A. Green. Screening of optical dopants in silicon solar cell for improved infrared response. In: Proceeding of the 13th European Photovoltaic Solar Energy Conf. (Nice, 1995).
</li>
<li>M.J. Keevers, M.A. Green. Extended infrared response of silicon solar cells and the impurity photovoltaic effect. Solar Energy Materials and Solar Cells 41–42, 195 (1996).
<a href="https://doi.org/10.1016/0927-0248(95)00113-1">https://doi.org/10.1016/0927-0248(95)00113-1</a>
</li>
<li>M.J. Keevers, M.A. Green. Efficiency improvements of silicon solar cells by the impurity photovoltaic effect. Appl. Phys. Lett. 75, 4022 (1994).
<a href="https://doi.org/10.1063/1.356025">https://doi.org/10.1063/1.356025</a>
</li>
<li>Z.T. Kuznicki, M. Ley. New near-IR effect due to an amorphized substructure inserted in a c-Si solar-cell emitter. Solar Energy Materials and Solar Cell 72, 621 (2002).
<a href="https://doi.org/10.1016/S0927-0248(01)00212-4">https://doi.org/10.1016/S0927-0248(01)00212-4</a>
</li>
<li> M. Ley, Z.T. Kuznicki. Experimental and theoretical investigation of a new potential barriers due to sharp a-Si-c-Si heterointerfaces buried in the solar cell emitter. Solar Energy Mater. and Solar Cell 72, 613 (2002).
<a href="https://doi.org/10.1016/S0927-0248(01)00211-2">https://doi.org/10.1016/S0927-0248(01)00211-2</a>
</li>
<li> Z.T. Kuznicki. Enhanced absorption and quantum efficiency in locally modified single-crystal Si. Appl. Phys. Lett. 81, 4853 (2003).
<a href="https://doi.org/10.1063/1.1528730">https://doi.org/10.1063/1.1528730</a>
</li>
<li> M. Ley, Z.T. Kuznicki, D. Ballutaude. Electronic transport in mind model solar cells: Collection efficiency in the presence of a-Si/c-Si heterointerfaces. In: Proceedings of the 29th Photovoltaic Specialists Conference (New Orlean, USA, 2002).
<a href="https://doi.org/10.1109/PVSC.2002.1190475">https://doi.org/10.1109/PVSC.2002.1190475</a>
</li>
<li> Ghania Azouzzi, Wahiba Tazibt. Improving silicon solar cell efficiency by using impurity photovoltaic effect. Energy Procedia 41, 40 (2013).
<a href="https://doi.org/10.1016/j.egypro.2013.09.005">https://doi.org/10.1016/j.egypro.2013.09.005</a>
</li>
<li> Zhao Baoxing, Zhou Jicheng, Chen Yongmin. Numerical simulation of the impurity photovoltaic effect in silicon solar cell doped with thallium. Physica B 405, 3834 (2010).
<a href="https://doi.org/10.1016/j.physb.2010.06.012">https://doi.org/10.1016/j.physb.2010.06.012</a>
</li>
<li> Akeed A. Pavel, M. Rezwan Khan, N.E. Islam. On the possibility to improve silicon solar efficiency through impurity photovoltaic effect and compensatio. Solid state electronic 54, 1278 (2010).
<a href="https://doi.org/10.1016/j.sse.2010.04.004">https://doi.org/10.1016/j.sse.2010.04.004</a>
</li>
<li> Ghania Azouzzi, Mohamed Cheegaar. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation. Physica B 406, 1773 (2011).
<a href="https://doi.org/10.1016/j.physb.2011.02.025">https://doi.org/10.1016/j.physb.2011.02.025</a>
</li>
<li> E.T. Hu, G.Q. Yue, R.J. Zhang, Y.X. Cheng, L.Y. Chen, S.Y. Wang. Numerical simulation of multilevel impurity photovoltaic effect in sulfur doped crystalline silicon. Renewable Energy 77, 442 (2015).
<a href="https://doi.org/10.1016/j.renene.2014.12.049">https://doi.org/10.1016/j.renene.2014.12.049</a>
</li>
<li> S. Khelifia, J. Verschraegenb, M. Burgelmanb, A. Belghachia. Numerical simulation of the impurity photovoltaic effect in silicon solar cells. Renewable Energy 33, 293 (2008).
<a href="https://doi.org/10.1016/j.renene.2007.05.027">https://doi.org/10.1016/j.renene.2007.05.027</a>
</li>
<li> M. Schmeits, A.A. Mani. Impurity photovoltaic effect in c-Si solar cells. A numerical study. J. Appl. Phys. 85, 2207 (1999).
<a href="https://doi.org/10.1063/1.369528">https://doi.org/10.1063/1.369528</a>
</li>
<li> H. Kasai, T. Sato, H. Matsumura. Impurity photovoltaic effect in crystalline silicon solar cells. in: Proceedings of the 26th Photovoltaic Specialists Conference (Anaheim, 1997).
<a href="https://doi.org/10.1109/PVSC.1997.654067">https://doi.org/10.1109/PVSC.1997.654067</a>
</li>
<li> H. Kasai, H. Matsumura. Study for improvement of solar cell efficiency by impurity photovoltaic effect. Sol. Energy Mater. Sol. Cells 48, 93 (1997).
<a href="https://doi.org/10.1016/S0927-0248(97)00075-5">https://doi.org/10.1016/S0927-0248(97)00075-5</a>
</li>
<li> H. Matsumura, H. Kasai. Theoretical study for drastic improvements of solar cell. Jpn. J. Appl. Phys. 34, 2252 (1997).
<a href="https://doi.org/10.1143/JJAP.34.2252">https://doi.org/10.1143/JJAP.34.2252</a>
</li>
<li> H. Kasai, H. Matsumura. Optical absorption properties of indium-doped thin crystalline silicon films. Jpn. J. Appl. Phys. 37, 5609 (1998).
<a href="https://doi.org/10.1143/JJAP.37.5609">https://doi.org/10.1143/JJAP.37.5609</a>
</li>
<li> J.W. Mayer, L. Eriksson, J.A. Davids. Ion Implantation in Semiconductors (Academic Press, 1970).
</li>
<li> R. Stangl, M. Kriegel, M. Schmidt. AFORS-HET, version 2.2,A numerical computer program for simulation of heterojunction solar cell and measurement. In: Proc. WCPEC-4, 4th World Conference on Photovoltaic Energy Conversion (USA, 2006).
</li>
<li> S.M. Sze. Physics of Semiconductor Devices (Wiley, 1969).
</li>
<li> S.J. Fornash, A. Rothwarf. Current Topics in Photovoltaics, Edited by T.J. Coutts, J. D. Meakin (Academic Press, 1985).
</li>
<li> A.V. Kozinetz, V.A. Skryshevsky. Theoretical analysis of the efficiency of silicon solar cell with amorphized layer in space charge region. Ukr. J. Phys. 7, 620 (2015).
<a href="https://doi.org/10.15407/ujpe60.07.0620">https://doi.org/10.15407/ujpe60.07.0620</a>
</li>
<li> Z. Kuznicki, Meyreis Patrik. Methods for producing photovolaic material and device able to exploit high energy photons. US Patent 20110162700, July 7, 2011.
</li>
<li> Z.T. Kuznicki. Process for the production of a photovoltaic material or device, material or device thus obtained and photocell comprising such a material or device. US Patent 5,935,345, August 10, 1999.
</li>
<li> I.I. Ivanov, V.A. Skryshevsky, T. Nychyporuk, M. Lemiti, A.V. Makarov, N.I. Klyui, O.V. Tretyak. Porous silicon Bragg mirrors on single- and multi-crystalline silicon for solar cells. Renewable Energy 55, 79 (2013).
<a href="https://doi.org/10.1016/j.renene.2012.12.031">https://doi.org/10.1016/j.renene.2012.12.031</a>
</li>
<li> I.I. Ivanov, V.A. Skryshevsky, O.S. Kyslovets, T. Nychyporuk, M. Lemiti. Porous silicon Bragg reflectors on multicrystalline silicon wafer with p?n junction. J. Phys.: Conf. Series 709, 012006 (2016).
<a href="https://doi.org/10.1088/1742-6596/709/1/012006">https://doi.org/10.1088/1742-6596/709/1/012006</a>
</li>
<li> S.V. Litvinenko, A.V. Kozinetz, V.A. Skryshevsky. Concept of photovoltaic transducer on a base of modified p?n junction solar cell. Sensor and Actuators A: Physical 224, 30 (2015).
<a href="https://doi.org/10.1016/j.sna.2015.01.014">https://doi.org/10.1016/j.sna.2015.01.014</a>
</li>
<li> S. Khelifi, M. Burgelman, J. Verschraegen, Abderrahmane Belghachi. Impurity photovoltaic effect in GaAs solar cell with two deep impurity levels. In: Proc. of NUMOS Gent, 28–30 March, 2007 92, 1559 (2008).
</li>
<li> G. Beaucarme, A.S. Brown, M.J. Keevers, R. Corkish, M.A. Green. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for veryhigh-efficiency solar cells? Progress in Photovoltaics 10, 345 (2002).
<a href="https://doi.org/10.1002/pip.433">https://doi.org/10.1002/pip.433</a>
</li>
<li> A.I. Manilov, S.V. Litvinenko, S.A. Alekseev, G.V. Kuznetsov, V.A. Skryshevsky. Use of powders and composites based on porous and crystalline silicon in the hydrogen power industry. Ukr. J. Phys. 55, 928 (2010).
</li>
<li> V.G. Litovchenko, N.I. Klyui. Solar cells based on DLC film – Si structures for space application. Solar Energy Materials and Solar Cells 68, 55 (2001).
<a href="https://doi.org/10.1016/S0927-0248(00)00345-7">https://doi.org/10.1016/S0927-0248(00)00345-7</a></li></ol>

Downloads

Published

2018-02-01

How to Cite

Kozinetz, A. V., & Skryshevsky, V. A. (2018). Amorphous Submicron Layer in Depletion Region: New Approach to Increase the Silicon Solar Cell Efficiency. Ukrainian Journal of Physics, 63(1), 38–48. https://doi.org/10.15407/ujpe63.01.0038

Issue

Section

Semiconductors and dielectrics