Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites

  • M. P. Gorishnyi Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)
  • A. B. Verbitsky Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)

Abstract

The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sputtering of the components – successively or simultaneously, respectively – in vacuum. The photovoltaic spectra were measured, by using the condenser method. It is found for the first time that the largest changes ΔD1 in the TC/TCNQ and TC + TCNQ absorption spectra with respect to the sum of the absorption spectra of the components are observed in the intervals of TCNQ dimeric bands at 2.214 eV (ΔD1 < 0) and in all TC bands (ΔD1 > 0). Those changes testify to the formation of charge transfer complexes between the TC (the electron donor) and TCNQ (the electron acceptor) molecules at the interfaces in the TC/TCNQ heterostructures and in the bulk of TC + TCNQ composites, which is also confirmed by the appearance of TC+- and TCNQ-bands in the photovoltaic spectra of both the heterostructure and composite films. This result is important for a deeper understanding of the operating mechanisms in various potentially imaginable devices based on those heterostructures and composites (solar cells, field-effect transistors, and light-emitting diodes).

Keywords donor-acceptor interaction, films, heterostructures, composites, tetracene, tetracyanoquinodimethane, absorption spectrum, photovoltaic response, photo-emf

References


  1. N. Geacintov, M. Pope, H. Kallman. Photogeneration of charge carriers in tetracene. J. Chem. Phys. 45, 2639 (1966).
    https://doi.org/10.1063/1.1727984

  2. P.J. Reucroft, P.L. Kronick, E.E. Hillman. Photovoltaic effects in tetracene crystals. Mol. Cryst. Liq. Cryst. 6, 247 (1969).
    https://doi.org/10.1080/15421406908082962

  3. M. Campione, D. Braga, L. Raimondo, M. Moret, A. Sassella, S. Binetti, M. Acciarri. The photovoltaic response of intrinsic organic semiconductor single crystals. Open Appl. Phys. J. 3, 17 (2010).
    https://doi.org/10.2174/1874183501003010017

  4. M.P. Gorishnyi, A.B. Verbitsky. Structural, optical, and photovoltaic properties of tetracene thin films. Ukr. J. Phys. 6, 50 (2016).
    https://doi.org/10.15407/ujpe61.01.0050

  5. C.-W. Chu, Y. Shao, V. Shrotriua, Y. Yang. Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005).
    https://doi.org/10.1063/1.1946184

  6. Y. Shao, S. Sista, C.-W. Chu, D. Sievers, Y. Yang. Enhancement of tetracene photovoltaic devices with heat treatment. Appl. Phys. Lett. 90, 103501 (2007).
    https://doi.org/10.1063/1.2709505

  7. R.J. Tseng, R. Chan, V.C. Tung, Y. Yang. Anisotropy in organic single-crystal photovoltaic characteristics. Adv. Mater. 20, 435 (2008).
    https://doi.org/10.1002/adma.200701374

  8. J.-M. Choi, J. Lee, D.K. Hwang, J.H. Kim, S. Im, E. Kim. Comparative study of the photoresponse from tetracenebased and pentacene-based thin-film transistors. J. Appl. Phys. Lett. 88, 043508 (2006).
    https://doi.org/10.1063/1.2168493

  9. Y. Xia, V. Kalinari, C.D. Frisibie, N.K. Oh, J.A. Rogers. Tetracene air-gap single-crystal field-effect transistors. J. Appl. Phys. Lett. 90, 162106 (2007).
    https://doi.org/10.1063/1.2724895

  10. R. Sarma, D. Saikia. Study of tetracene thin film transistors using La2O3 as gate insulator. Indian J. Pure Appl. Phys. 47, 876 (2009).

  11. M.M. Islam. Self-assemble monolayer dependent field effect transistors performance based on tetracene single-crystal. J. Bangladesh Chem. Soc. 25 (2), 194 (2012).

  12. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).
    https://doi.org/10.1103/PhysRevLett.91.157406

  13. J. Renynaert, D. Cheyns, D. Janssen, R. M?uller, V.I. Arkhipov, J. Genoe, G. Borghs, P. Heremans. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).
    https://doi.org/10.1063/1.1913793

  14. Y. Ohshima, H. Satou, N. Hirako, H. Kohn, T. Manaka, M. Iwamoto. Direct observation of carrier behavior leading to electroluminescence in tetracene field-effect transistor. Jpn. J. Appl. Phys. 50, 04Dk14 (2011).
    https://doi.org/10.1143/JJAP.50.04DK14

  15. D.S. Acker, R.J. Harder, W.R. Hertler, W. Mahler, L.R. Melbv, R.E. Benson, W.E. Mochel. 7,7,8,8-tetracyanoquinodimethane and its electrically conducting anionradical derivatives. J. Am. Chem. Soc. 82, 6408 (1960).
    https://doi.org/10.1021/ja01509a052

  16. J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95, 948 (1973).
    https://doi.org/10.1021/ja00784a066

  17. H.T. Jonkman, J. Kommandeur. The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem. Phys. Lett. 15 (4), 496 (1972).
    https://doi.org/10.1016/0009-2614(72)80357-9

  18. M.P. Gorishnyi. Electron energy structure of the tetracyano-quinodimethane molecule in the neutral and anionradical states. Ukr. J. Phys. 49, 1158 (2004).

  19. K. Kojima, A. Maeda, M. Ieda. Electrical properties of TCNQ evaporated thin films. In Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, 8-12 July 1991, Vol. 1, p, 185 (1991).
    https://doi.org/10.1109/ICPADM.1991.172039

  20. T. Oyamada, H. Tanaka, K. Matsushide, H. Sasabe, Ch. Adachi. Switching effect in Cu : TCNQ charge transfercomplex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252 (2003).
    https://doi.org/10.1063/1.1600848

  21. X.-L. Mo, G.-R. Chen, Q.-J. Cai, Zh.-Y. Fan, H.-H. Xu, Y. Yao, J. Yang, H.-H. Gu, Zh.-Y. Hua. Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films 436, 259 (2003).
    https://doi.org/10.1016/S0040-6090(03)00593-5

  22. Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, J.G. Lu. Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Trans. Nanotechnol. 4 (2), 238 (2005).
    https://doi.org/10.1109/TNANO.2004.837852

  23. K. Xiao, I.N. Ivanov, A.A. Puretzky, Z. Liu, D.B. Geohegan. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 18, 2184 (2006).
    https://doi.org/10.1002/adma.200600621

  24. M.P. Gorishnyi, O.V. Kovalchuk, T.N. Kovalchyk, A.B. Verbitsky, V.E. Vovk. Optical and photoelectric properties of heterostructures of fullerene C60 with phthalocyanines and tetracyanoquinodimethane (TCNQ). Mol. Cryst. Liq. Cryst. 535, 49 (2011).
    https://doi.org/10.1080/15421406.2011.537899

  25. H. Gao, Z. Xue, Q. Wu. Chin. Electrical phenomena of C-tetracyanoquinodimethane thin films. Chin. Phys. Lett. 11, 766 (1994).
    https://doi.org/10.1088/0256-307X/11/12/014

  26. T. Sumimoto, M. Tisuka, S. Kunivoshi, K. Kudo, K. Tanaka, Y.H. Yu. In-situ field effect measurements of copper phthalocyanine films doped with acceptor molecule. J. Korean Phys. Soc. 31, 522 (1997).

  27. R. Ishikawa, M. Baudo, Y. Morimoto, A. Sandhu. Doping graphene films via chemically mediated charge transfer. Nanoscale Res. Lett. 6, 111 (2011).
    https://doi.org/10.1186/1556-276X-6-111

  28. A.J.C. Buurma, O.D. Jurchescu, I. Shokaryev, J. Baas, A. Meetsma, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra. Crystal growth, structure, and electronic band structure of tetracene–TCNQ. J. Chem. Phys. C 111 (8), 3486 (2007).
    https://doi.org/10.1021/jp065944a

  29. I. Shokaryev, A.J.C. Buurma, O.D. Jurchescu, M.A. Uijttewaal, G.A. de Wijs, T.T.M. Palstra, R.A. de Groot. Electronic band structure of tetracene–TCNQ and perylene–TCNQ compounds. J. Chem. Phys. A 112, 2497 (2008).
    https://doi.org/10.1021/jp0753777

  30. P. Hu, H. Li, Y. Li, Ch. Kloc. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ chargetransfer compounds. Cryst. Eng. Commun. 19, 618 (2017).
    https://doi.org/10.1039/C6CE02116F

  31. M. Sakai, M. Iizuka, M. Nakamura, K. Kudo. Fabrication and electrical characterization of tetrathiafulvalenetetracyanoquinodimethane molecular wires. Jpn. J. Appl. Phys. 42, N 4B, 2488 (2003).
    https://doi.org/10.1143/JJAP.42.2488

  32. E.A. Silinsh, M.V. Kurik, V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, 1988) (in Russian).

  33. R.H. Boyd, W.D. Philips. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927 (1965).
    https://doi.org/10.1063/1.1697251

  34. M.P. Gorishnyi. Electron structure of tetrathiatetracene and photo-electric properties of heterostructures on its basis. Ph.D. thesis (Lviv, 1990) (in Russian).

  35. H. Kuroda, S. Hiroma, H. Akamatu. Polarized absorption spectra of single crystals of ion radical salts. I. Molecular compounds of 7,7,8,8-tetracyano-p-quinodimethane with with N, N, N', N'-tetramethyl-p-phenylenediamine and N, N-dimethyl-p-phenylenediamine. Bull. Chem. Soc. Jpn. 41, 2855 (1968).
    https://doi.org/10.1246/bcsj.41.2855

  36. S. Hiroma, H. Kuroda, H. Akamatu. Semiconductivity and photoconductivity of TCNQ crystal. Bull. Chem. Soc. Jpn. 44, 974 (1971).
    https://doi.org/10.1246/bcsj.44.974

  37. Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. I. Simple salts. Bull. Chem. Soc. Jpn. 42, 71 (1969).
    https://doi.org/10.1246/bcsj.42.71

  38. Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. II. Complex salts. Bull. Chem. Soc. Jpn. 42, 637 (1969).
    https://doi.org/10.1246/bcsj.42.637

  39. L. Ma, P. Hu, H. Jang, C. Kloc, H. Sun, C. Soci, A.A. Voityuk, M.E. Michel-Beyerle, G.G. Gurzadyan. Single photon triggered dianion formation in TCNQ and F4TCNQ crystals. Sci. Rep. 6, 28510 (2016).
    https://doi.org/10.1038/srep28510

  40. M.P. Gorishnyi. Photoeffect in polythiopentacene films and influence of permanent illumination on it. Ukr. J. Phys. 52, 1154 (2007).

  41. Ya.I. Vertsimakha, Yu.M. Lopatkin. Influence of photoirradiation on the photoelectric properties of tetracene films. Fundam. Osn. Opt. Pamyat. Sredy No. 15, 49 (1984) (in Russian).

  42. R. Schlaf, H. Murata, Z.H. Kafafi. Work function measurements on indium tin oxide films. J. Electr. Spectrosc. Rel. Phenom. 120, 149 (2001).
    https://doi.org/10.1016/S0368-2048(01)00310-3

  43. P.H. Fang, A. Golubovic, N.A. Dimond. Photovoltaic current anomaly in naphthacene. Jpn. J. Appl. Phys. 11, 1298 (1972).
    https://doi.org/10.1143/JJAP.11.1298
Published
2018-01-31
How to Cite
Gorishnyi, M., & Verbitsky, A. (2018). Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites. Ukrainian Journal Of Physics, 63(1), 70-80. doi:10.15407/ujpe63.01.0070
Section
Surface physics