Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites

  • M. P. Gorishnyi Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)
  • A. B. Verbitsky Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)


The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sputtering of the components – successively or simultaneously, respectively – in vacuum. The photovoltaic spectra were measured, by using the condenser method. It is found for the first time that the largest changes ΔD1 in the TC/TCNQ and TC + TCNQ absorption spectra with respect to the sum of the absorption spectra of the components are observed in the intervals of TCNQ dimeric bands at 2.214 eV (ΔD1 < 0) and in all TC bands (ΔD1 > 0). Those changes testify to the formation of charge transfer complexes between the TC (the electron donor) and TCNQ (the electron acceptor) molecules at the interfaces in the TC/TCNQ heterostructures and in the bulk of TC + TCNQ composites, which is also confirmed by the appearance of TC+- and TCNQ-bands in the photovoltaic spectra of both the heterostructure and composite films. This result is important for a deeper understanding of the operating mechanisms in various potentially imaginable devices based on those heterostructures and composites (solar cells, field-effect transistors, and light-emitting diodes).

Keywords donor-acceptor interaction, films, heterostructures, composites, tetracene, tetracyanoquinodimethane, absorption spectrum, photovoltaic response, photo-emf


1. N. Geacintov, M. Pope, H. Kallman. Photogeneration of charge carriers in tetracene. J. Chem. Phys. 45, 2639 (1966).
2. P.J. Reucroft, P.L. Kronick, E.E. Hillman. Photovoltaic effects in tetracene crystals. Mol. Cryst. Liq. Cryst. 6, 247 (1969).
3. M. Campione, D. Braga, L. Raimondo, M. Moret, A. Sassella, S. Binetti, M. Acciarri. The photovoltaic response of intrinsic organic semiconductor single crystals. Open Appl. Phys. J. 3, 17 (2010).
4. M.P. Gorishnyi, A.B. Verbitsky. Structural, optical, and photovoltaic properties of tetracene thin films. Ukr. J. Phys. 6, 50 (2016).
5. C.-W. Chu, Y. Shao, V. Shrotriua, Y. Yang. Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005).
6. Y. Shao, S. Sista, C.-W. Chu, D. Sievers, Y. Yang. Enhancement of tetracene photovoltaic devices with heat treatment. Appl. Phys. Lett. 90, 103501 (2007).
7. R.J. Tseng, R. Chan, V.C. Tung, Y. Yang. Anisotropy in organic single-crystal photovoltaic characteristics. Adv. Mater. 20, 435 (2008).
8. J.-M. Choi, J. Lee, D.K. Hwang, J.H. Kim, S. Im, E. Kim. Comparative study of the photoresponse from tetracenebased and pentacene-based thin-film transistors. J. Appl. Phys. Lett. 88, 043508 (2006).
9. Y. Xia, V. Kalinari, C.D. Frisibie, N.K. Oh, J.A. Rogers. Tetracene air-gap single-crystal field-effect transistors. J. Appl. Phys. Lett. 90, 162106 (2007).
10. R. Sarma, D. Saikia. Study of tetracene thin film transistors using La2O3 as gate insulator. Indian J. Pure Appl. Phys. 47, 876 (2009).
11. M.M. Islam. Self-assemble monolayer dependent field effect transistors performance based on tetracene single-crystal. J. Bangladesh Chem. Soc. 25 (2), 194 (2012).
12. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).
13. J. Renynaert, D. Cheyns, D. Janssen, R. M¨uller, V.I. Arkhipov, J. Genoe, G. Borghs, P. Heremans. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).
14. Y. Ohshima, H. Satou, N. Hirako, H. Kohn, T. Manaka, M. Iwamoto. Direct observation of carrier behavior leading to electroluminescence in tetracene field-effect transistor. Jpn. J. Appl. Phys. 50, 04Dk14 (2011).
15. D.S. Acker, R.J. Harder, W.R. Hertler, W. Mahler, L.R. Melbv, R.E. Benson, W.E. Mochel. 7,7,8,8-tetracyanoquinodimethane and its electrically conducting anionradical derivatives. J. Am. Chem. Soc. 82, 6408 (1960).
16. J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95, 948 (1973).
17. H.T. Jonkman, J. Kommandeur. The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem. Phys. Lett. 15 (4), 496 (1972).
18. M.P. Gorishnyi. Electron energy structure of the tetracyano-quinodimethane molecule in the neutral and anionradical states. Ukr. J. Phys. 49, 1158 (2004).
19. K. Kojima, A. Maeda, M. Ieda. Electrical properties of TCNQ evaporated thin films. In Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, 8-12 July 1991, Vol. 1, p, 185 (1991).
20. T. Oyamada, H. Tanaka, K. Matsushide, H. Sasabe, Ch. Adachi. Switching effect in Cu : TCNQ charge transfercomplex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252 (2003).
21. X.-L. Mo, G.-R. Chen, Q.-J. Cai, Zh.-Y. Fan, H.-H. Xu, Y. Yao, J. Yang, H.-H. Gu, Zh.-Y. Hua. Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films 436, 259 (2003).
22. Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, J.G. Lu. Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Trans. Nanotechnol. 4 (2), 238 (2005).
23. K. Xiao, I.N. Ivanov, A.A. Puretzky, Z. Liu, D.B. Geohegan. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 18, 2184 (2006).
24. M.P. Gorishnyi, O.V. Kovalchuk, T.N. Kovalchyk, A.B. Verbitsky, V.E. Vovk. Optical and photoelectric properties of heterostructures of fullerene C60 with phthalocyanines and tetracyanoquinodimethane (TCNQ). Mol. Cryst. Liq. Cryst. 535, 49 (2011).
25. H. Gao, Z. Xue, Q. Wu. Chin. Electrical phenomena of C-tetracyanoquinodimethane thin films. Chin. Phys. Lett. 11, 766 (1994).
26. T. Sumimoto, M. Tisuka, S. Kunivoshi, K. Kudo, K. Tanaka, Y.H. Yu. In-situ field effect measurements of copper phthalocyanine films doped with acceptor molecule. J. Korean Phys. Soc. 31, 522 (1997).
27. R. Ishikawa, M. Baudo, Y. Morimoto, A. Sandhu. Doping graphene films via chemically mediated charge transfer. Nanoscale Res. Lett. 6, 111 (2011).
28. A.J.C. Buurma, O.D. Jurchescu, I. Shokaryev, J. Baas, A. Meetsma, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra. Crystal growth, structure, and electronic band structure of tetracene–TCNQ. J. Chem. Phys. C 111 (8), 3486 (2007).
29. I. Shokaryev, A.J.C. Buurma, O.D. Jurchescu, M.A. Uijttewaal, G.A. de Wijs, T.T.M. Palstra, R.A. de Groot. Electronic band structure of tetracene–TCNQ and perylene–TCNQ compounds. J. Chem. Phys. A 112, 2497 (2008).
30. P. Hu, H. Li, Y. Li, Ch. Kloc. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ chargetransfer compounds. Cryst. Eng. Commun. 19, 618 (2017).
31. M. Sakai, M. Iizuka, M. Nakamura, K. Kudo. Fabrication and electrical characterization of tetrathiafulvalenetetracyanoquinodimethane molecular wires. Jpn. J. Appl. Phys. 42, N 4B, 2488 (2003).
32. E.A. Silinsh, M.V. Kurik, V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, 1988) (in Russian).
33. R.H. Boyd, W.D. Philips. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927 (1965).
34. M.P. Gorishnyi. Electron structure of tetrathiatetracene and photo-electric properties of heterostructures on its basis. Ph.D. thesis (Lviv, 1990) (in Russian).
35. H. Kuroda, S. Hiroma, H. Akamatu. Polarized absorption spectra of single crystals of ion radical salts. I. Molecular compounds of 7,7,8,8-tetracyano-p-quinodimethane with with N, N, N' , N'-tetramethyl-p-phenylenediamine and N, N-dimethyl-p-phenylenediamine. Bull. Chem. Soc. Jpn. 41, 2855 (1968).
36. S. Hiroma, H. Kuroda, H. Akamatu. Semiconductivity and photoconductivity of TCNQ crystal. Bull. Chem. Soc. Jpn. 44, 974 (1971).
37. Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. I. Simple salts. Bull. Chem. Soc. Jpn. 42, 71 (1969).
38. Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. II. Complex salts. Bull. Chem. Soc. Jpn. 42, 637 (1969).
39. L. Ma, P. Hu, H. Jang, C. Kloc, H. Sun, C. Soci, A.A. Voityuk, M.E. Michel-Beyerle, G.G. Gurzadyan. Single photon triggered dianion formation in TCNQ and F4TCNQ crystals. Sci. Rep. 6, 28510 (2016).
40. M.P. Gorishnyi. Photoeffect in polythiopentacene films and influence of permanent illumination on it. Ukr. J. Phys. 52, 1154 (2007).
41. Ya.I. Vertsimakha, Yu.M. Lopatkin. Influence of photoirradiation on the photoelectric properties of tetracene films. Fundam. Osn. Opt. Pamyat. Sredy No. 15, 49 (1984) (in Russian).
42. R. Schlaf, H. Murata, Z.H. Kafafi. Work function measurements on indium tin oxide films. J. Electr. Spectrosc. Rel. Phenom. 120, 149 (2001).
43. P.H. Fang, A. Golubovic, N.A. Dimond. Photovoltaic current anomaly in naphthacene. Jpn. J. Appl. Phys. 11, 1298 (1972).
How to Cite
Gorishnyi, M., & Verbitsky, A. (2018). Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites. Ukrainian Journal Of Physics, 63(1), 70-80. Retrieved from
Surface physics