Mixed ZnSxSe1–x Crystals as a Possible Material for Alpha-Particle and X-ray Detectors


  • O. G. Trubaieva Institute for Scintillation Materials, Nat. Acad. Sci. of Ukraine
  • M. A. Chaika Instytut Fizyki, Polska Akademia Nauk
  • O. V. Zelenskaya Institute for Scintillation Materials, Nat. Acad. Sci. of Ukraine




scintillator, mixed crystals, ZnSxSe1−x, alpha detector, X-ray luminescence


A possibility to use ZnSxSe1−x as a material for the detection of X-rays and alpha particles has been studied. The influence of the sulfur content on the properties of bulk ZnSxSe1−x crystals is analyzed. Six specimens with different component contents were grown, by using the Bridgman–Stockbarger method: ZnS0.07Se0.93, ZnS0.15Se0.85, ZnS0.22Se0.78, ZnS0.28Se0.72, ZnS0.32Se0.68, and ZnS0.39Se0.61. The intensity of X-ray luminescence spectra of ZnSxSe1−x crystals is found to increase with the sulfur content and reaches a maximum for the composition ZnS0.22Se0.78. The luminescence light yield of mixed ZnSxSe1−x crystals is higher than that of commercial ZnSe(Te) and ZnSe(Al) crystals. The advantages of mixed crystals based on
ZnSxSe1−x over the ZnS(Te) and ZnSe(Al) crystals have been discussed.


<li>L.V. Atroshenko, L.P. Galchinetskii, S.N. Galkin et al. Distribution of tellurium in melt-grown ZnSe(Te) crystals. J. Cryst. Growth 197, 471 (1999).
<a href="https://doi.org/10.1016/S0022-0248(98)00963-4">https://doi.org/10.1016/S0022-0248(98)00963-4</a>
<li>N.G. Starzhinskiy, B.V. Grinyov, L.P. Galchinetskii et al. The AIIBVI-Based Scintillators. Preparation. Properties and Features of Their Application (Institute for Single Crystals, 2007) (in Russian).
<li>A. Wagner, W.P. Tan, K. Chalut et al. Energy resolution and energy–light response of CsI(Tl) scintillators for charged particle detection. J. Cryst. Growth 456, 290 (2001).
<a href="https://doi.org/10.1016/S0168-9002(00)00542-8">https://doi.org/10.1016/S0168-9002(00)00542-8</a>
<li>S. Usuda. Development of ZnS(Ag)/NE102A and ZnS(Ag)/Stilbene phoswich detectors for simultaneous a and B(y) counting. J. Nucl. Sci. Tech. 299, 927 (1992).
<a href="https://doi.org/10.1080/18811248.1992.9731613">https://doi.org/10.1080/18811248.1992.9731613</a>
<li>T. Homann, U. Hotje, M. Binnewies et al. Composition-dependent band gap in ZnSxSe1?x: A combined experimental and theoretical study. Solid State Sci. 81, 44 (2006).
<a href="https://doi.org/10.1016/j.solidstatesciences.2005.08.015">https://doi.org/10.1016/j.solidstatesciences.2005.08.015</a>
<li>A.I. Focsha, P.A. Gashin, V.D. Ryzhikov et al. Preparation and properties of an integrated system "photosensitive heterostructure–semiconductor scintillator" on the basis of compounds AIIBVI. Int. J. Inorg. Mater. 38, 1223 (2001).
<a href="https://doi.org/10.1016/S1466-6049(01)00134-9">https://doi.org/10.1016/S1466-6049(01)00134-9</a>
<li>M. Emam-Ismail, M. El-Hagary, E. Ramadan et al. Influence of y-irradiation on optical parameters of electron beam evaporated ZnSe1?xTex nanocrystalline thin films. Radiat. Eff. Defect. Sol. 169, 61 (2014).
<a href="https://doi.org/10.1080/10420150.2013.811505">https://doi.org/10.1080/10420150.2013.811505</a>
<li>R. H. Hussein, O. Pags, S. Doyen-Schuler et al. Percolation-type multi-phonon pattern of Zn(Se,S): Backward/forward Raman scattering and ab initio calculations. J. Cryst. Growth 644, 704 (2015).
<a href="https://doi.org/10.1016/j.jallcom.2015.04.078">https://doi.org/10.1016/j.jallcom.2015.04.078</a>
<li>R. Hajj Hussein, O. Pags, F. Firszt et al. Near-forward Raman study of a phonon-polariton reinforcement regime in the Zn(Se,S) alloy. J. Appl. Phys. 116, 083511 (2014).
<a href="https://doi.org/10.1063/1.4893322">https://doi.org/10.1063/1.4893322</a>
<li> R.H. Hussein, O. Pags, A. Polian et al. Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations. J. Phys.: Condens. Matter 28, 205401 (2016).
<a href="https://doi.org/10.1088/0953-8984/28/20/205401">https://doi.org/10.1088/0953-8984/28/20/205401</a>
<li> K. Mochizuki, M. Takakusaki. Growth of in-doped ZnSxSe1?x single crystals and their photoluminescence. Phys. Status Solidi A 94, 243 (1986).
<a href="https://doi.org/10.1002/pssa.2210940129">https://doi.org/10.1002/pssa.2210940129</a>
<li> M.E. Ozsan, J. Woods. Green electroluminescence in crystals of ZnS0.6Se0.4. J. Appl. Phys. Lett. 25, 489 (1974).
<a href="https://doi.org/10.1063/1.1655560">https://doi.org/10.1063/1.1655560</a>
<li> S. Larach, R.E. Shrader, C.F. Stocker. Anomalous variation of band gap with composition in zinc sulfo- and selenotellurides. Phys. Rev. 108, 587 (1957).
<a href="https://doi.org/10.1103/PhysRev.108.587">https://doi.org/10.1103/PhysRev.108.587</a>
<li> S. Fujita. Growth of cubic ZnS, ZnSe and ZnSxSe1?x single crystals by iodine transport. J. Cryst. Growth. 33, 324 (1976).
<li> N.B. Su Ching-Hua, A. Bradley, C. Fow-Sen. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals. Opt. Mater. 60, 474 (2016).
<a href="https://doi.org/10.1016/j.optmat.2016.08.031">https://doi.org/10.1016/j.optmat.2016.08.031</a>
<li> E.L. Trukhanova, V.I. Levchenko, L.I. Postnova. Crystal growth of ZnSe1?xSx solid solutions at the lowest possible vapor pressure. J. Appl. Phys. 401, 083511 (2014).
<li> A. Catano, Z.K. Kun. Growth and characterization of ZnSe and homogeneous ZnSxSe1?x crystals. J. Cryst. Growth 479, 647 (1979).
<li> Y. Shirakawa, H. Kukimoto. The electron trap associated with an anion vacancy in ZnSe and ZnSxSe1?x. Solid State Commun. 34, 359 (1980).
<a href="https://doi.org/10.1016/0038-1098(80)90575-X">https://doi.org/10.1016/0038-1098(80)90575-X</a>
<li> G.D. Watkins. Radiation Effects in Semiconductors (Gordon and Breach, 1971).
<li> V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Gal'chinetskii et al. The role of oxygen in formation of radiative recombination centers in ZnSe1?xTex crystals. Int. J. Inorg. Mater. 116, 083511 (2014).
<li> N.N. Berchenko, V.E. Krevs, V.G. Sredin. Semiconductor Solid Solutions and Their Application (Voenizdat, 1982) (in Russian).
<li> A.M. Gurvich. Introduction to Physical Chemistry of Crystal Phosphors (Vysshaya Shkola, 1982) (in Russian).
<li> U. Kilgus, R. Kotthaus, E. Lange. Prospects of CsI (Tl)-photodiode detectors for low-level spectroscopy. Nucl. Instrum. Methods 297, 425 (1990).
<a href="https://doi.org/10.1016/0168-9002(90)91325-6">https://doi.org/10.1016/0168-9002(90)91325-6</a>



How to Cite

Trubaieva, O. G., Chaika, M. A., & Zelenskaya, O. V. (2018). Mixed ZnSxSe1–x Crystals as a Possible Material for Alpha-Particle and X-ray Detectors. Ukrainian Journal of Physics, 63(6), 546. https://doi.org/10.15407/ujpe63.6.546



Structure of materials