Mixed ZnSxSe1–x Crystals as a Possible Material for Alpha-Particle and X-ray Detectors

  • O. G. Trubaieva Institute for Scintillation Materials, Nat. Acad. Sci. of Ukraine
  • M. A. Chaika Instytut Fizyki, Polska Akademia Nauk
  • O. V. Zelenskaya Institute for Scintillation Materials, Nat. Acad. Sci. of Ukraine
Keywords: scintillator, mixed crystals, ZnSxSe1−x, alpha detector, X-ray luminescence

Abstract

A possibility to use ZnSxSe1−x as a material for the detection of X-rays and alpha particles has been studied. The influence of the sulfur content on the properties of bulk ZnSxSe1−x crystals is analyzed. Six specimens with different component contents were grown, by using the Bridgman–Stockbarger method: ZnS0.07Se0.93, ZnS0.15Se0.85, ZnS0.22Se0.78, ZnS0.28Se0.72, ZnS0.32Se0.68, and ZnS0.39Se0.61. The intensity of X-ray luminescence spectra of ZnSxSe1−x crystals is found to increase with the sulfur content and reaches a maximum for the composition ZnS0.22Se0.78. The luminescence light yield of mixed ZnSxSe1−x crystals is higher than that of commercial ZnSe(Te) and ZnSe(Al) crystals. The advantages of mixed crystals based on
ZnSxSe1−x over the ZnS(Te) and ZnSe(Al) crystals have been discussed.

References


  1. L.V. Atroshenko, L.P. Galchinetskii, S.N. Galkin et al. Distribution of tellurium in melt-grown ZnSe(Te) crystals. J. Cryst. Growth 197, 471 (1999).
    https://doi.org/10.1016/S0022-0248(98)00963-4

  2. N.G. Starzhinskiy, B.V. Grinyov, L.P. Galchinetskii et al. The AIIBVI-Based Scintillators. Preparation. Properties and Features of Their Application (Institute for Single Crystals, 2007) (in Russian).

  3. A. Wagner, W.P. Tan, K. Chalut et al. Energy resolution and energy–light response of CsI(Tl) scintillators for charged particle detection. J. Cryst. Growth 456, 290 (2001).
    https://doi.org/10.1016/S0168-9002(00)00542-8

  4. S. Usuda. Development of ZnS(Ag)/NE102A and ZnS(Ag)/Stilbene phoswich detectors for simultaneous a and B(y) counting. J. Nucl. Sci. Tech. 299, 927 (1992).
    https://doi.org/10.1080/18811248.1992.9731613

  5. T. Homann, U. Hotje, M. Binnewies et al. Composition-dependent band gap in ZnSxSe1?x: A combined experimental and theoretical study. Solid State Sci. 81, 44 (2006).
    https://doi.org/10.1016/j.solidstatesciences.2005.08.015

  6. A.I. Focsha, P.A. Gashin, V.D. Ryzhikov et al. Preparation and properties of an integrated system "photosensitive heterostructure–semiconductor scintillator" on the basis of compounds AIIBVI. Int. J. Inorg. Mater. 38, 1223 (2001).
    https://doi.org/10.1016/S1466-6049(01)00134-9

  7. M. Emam-Ismail, M. El-Hagary, E. Ramadan et al. Influence of y-irradiation on optical parameters of electron beam evaporated ZnSe1?xTex nanocrystalline thin films. Radiat. Eff. Defect. Sol. 169, 61 (2014).
    https://doi.org/10.1080/10420150.2013.811505

  8. R. H. Hussein, O. Pags, S. Doyen-Schuler et al. Percolation-type multi-phonon pattern of Zn(Se,S): Backward/forward Raman scattering and ab initio calculations. J. Cryst. Growth 644, 704 (2015).
    https://doi.org/10.1016/j.jallcom.2015.04.078

  9. R. Hajj Hussein, O. Pags, F. Firszt et al. Near-forward Raman study of a phonon-polariton reinforcement regime in the Zn(Se,S) alloy. J. Appl. Phys. 116, 083511 (2014).
    https://doi.org/10.1063/1.4893322

  10. R.H. Hussein, O. Pags, A. Polian et al. Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations. J. Phys.: Condens. Matter 28, 205401 (2016).
    https://doi.org/10.1088/0953-8984/28/20/205401

  11. K. Mochizuki, M. Takakusaki. Growth of in-doped ZnSxSe1?x single crystals and their photoluminescence. Phys. Status Solidi A 94, 243 (1986).
    https://doi.org/10.1002/pssa.2210940129

  12. M.E. Ozsan, J. Woods. Green electroluminescence in crystals of ZnS0.6Se0.4. J. Appl. Phys. Lett. 25, 489 (1974).
    https://doi.org/10.1063/1.1655560

  13. S. Larach, R.E. Shrader, C.F. Stocker. Anomalous variation of band gap with composition in zinc sulfo- and selenotellurides. Phys. Rev. 108, 587 (1957).
    https://doi.org/10.1103/PhysRev.108.587

  14. S. Fujita. Growth of cubic ZnS, ZnSe and ZnSxSe1?x single crystals by iodine transport. J. Cryst. Growth. 33, 324 (1976).

  15. N.B. Su Ching-Hua, A. Bradley, C. Fow-Sen. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals. Opt. Mater. 60, 474 (2016).
    https://doi.org/10.1016/j.optmat.2016.08.031

  16. E.L. Trukhanova, V.I. Levchenko, L.I. Postnova. Crystal growth of ZnSe1?xSx solid solutions at the lowest possible vapor pressure. J. Appl. Phys. 401, 083511 (2014).

  17. A. Catano, Z.K. Kun. Growth and characterization of ZnSe and homogeneous ZnSxSe1?x crystals. J. Cryst. Growth 479, 647 (1979).

  18. Y. Shirakawa, H. Kukimoto. The electron trap associated with an anion vacancy in ZnSe and ZnSxSe1?x. Solid State Commun. 34, 359 (1980).
    https://doi.org/10.1016/0038-1098(80)90575-X

  19. G.D. Watkins. Radiation Effects in Semiconductors (Gordon and Breach, 1971).

  20. V.D. Ryzhikov, N.G. Starzhinskiy, L.P. Gal'chinetskii et al. The role of oxygen in formation of radiative recombination centers in ZnSe1?xTex crystals. Int. J. Inorg. Mater. 116, 083511 (2014).

  21. N.N. Berchenko, V.E. Krevs, V.G. Sredin. Semiconductor Solid Solutions and Their Application (Voenizdat, 1982) (in Russian).

  22. A.M. Gurvich. Introduction to Physical Chemistry of Crystal Phosphors (Vysshaya Shkola, 1982) (in Russian).

  23. U. Kilgus, R. Kotthaus, E. Lange. Prospects of CsI (Tl)-photodiode detectors for low-level spectroscopy. Nucl. Instrum. Methods 297, 425 (1990).
    https://doi.org/10.1016/0168-9002(90)91325-6
Published
2018-07-12
How to Cite
Trubaieva, O., Chaika, M., & Zelenskaya, O. (2018). Mixed ZnSxSe1–x Crystals as a Possible Material for Alpha-Particle and X-ray Detectors. Ukrainian Journal of Physics, 63(6), 546. https://doi.org/10.15407/ujpe63.6.546
Section
Structure of materials