Sorption of Polymethine Dyes on Nanographites and Carbon Nanotubes

  • A. V. Kulinich Institute of Organic Chemistry, Nat. Acad. Sci of Ukraine
  • A. A. Ishchenko Institute of Organic Chemistry, Nat. Acad. Sci of Ukraine
  • L. F. Sharanda V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. Sci. of Ukraine
  • S. V. Shulga V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. Sci. of Ukraine
  • V. M. Ogenko V.I. Vernadsky Institute of General and Inorganic Chemistry, Nat. Acad. Sci. of Ukraine

Abstract

The sorption of functional molecules is a simple rather effective way of modification of nanostructures. The goal of this work is to study the sorption of various polymethine dyes on nanographites and carbon nanotubes. A simple technique affording the preparation of macroscopic amounts (tens of grams) of nanographite from an available starting material has been implemented. The chemical functionalization of the obtained nanographite has been carried out in order to modify its binding properties. Stable suspensions of nanographite and its modifications are obtained in water and organic solvents. It is found that the cationic, anionic and neutral (merocyanine) polymethine dyes do not bind efficiently with the surface of the studied
nanographites. Carbon nanotubes of different types (single-, double-, and multiwall) under the same conditions form stable associates with polymethine dyes, what is primarily manifested by a decrease in the absorption intensity of dyes in time, as well as by the additional stabilization of the nanotube suspension. The DFT calculations demonstrate that the studied dyes do not bind strongly, indeed, with nanographites, but they can form more stable aggregates with carbon nanotubes.

References


  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science 306 (5696), 666 (2004).
    https://doi.org/10.1126/science.1102896

  2. N. Komatsu, N. Kadota, T. Kimura, Y. Kikuchi, M. Arikawa. Remarkable improvement in efficiency of filtration method for fullerene purification. Fullerenes, Nanotubes, Carbon Nanostruct. 15, 217 (2007).
    https://doi.org/10.1080/15363830701421405

  3. M.C. Hersam. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).
    https://doi.org/10.1038/nnano.2008.135

  4. G. Ning, T. Li, J. Yan, C. Xu, T. Wei, Z. Fan. Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors. Carbon 54, 241 (2013).
    https://doi.org/10.1016/j.carbon.2012.11.035

  5. K. Kusakabe, M. Maruyama. Magnetic nanographite. Phys. Rev. B 67, 092406 (2003).
    https://doi.org/10.1103/PhysRevB.67.092406

  6. X. Huang, X. Qi, F. Boey, H. Zhang. Graphene-based composites. Chem. Soc. Rev. 41, 666 (2012).
    https://doi.org/10.1039/C1CS15078B

  7. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart. Carbon nanotubes: present and future commercial applications. Science 339 (6119), 535 (2013).
    https://doi.org/10.1126/science.1222453

  8. A.A. Ishchenko. Structure and spectral-luminescent properties of polymethine dyes. Russ. Chem. Rev. 60, 865 (1991).
    https://doi.org/10.1070/RC1991v060n08ABEH001116

  9. A. Mishra, R.K. Behera, P.K. Behera, B.K. Mishra, G.B. Behera. Cyanines during the 1990s: A review. Chem. Rev. 100, 1973 (2000).
    https://doi.org/10.1021/cr990402t

  10. F. W?urthner, T.E. Kaiser, C.R. Saha-M?oller. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376 (2011).
    https://doi.org/10.1002/anie.201002307

  11. N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin, P.S. Kop'ev, Zh.I. Alferov. Quantum dot heterostructures: Fabrication, properties, lasers (Review). Semiconductors 32, 343 (1998).
    https://doi.org/10.1134/1.1187396

  12. Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: A nanoscale study. Adv. Funct. Mater. 23, 4684 (2013).
    https://doi.org/10.1002/adfm.201370188

  13. A.V. Melezhyk, A.G. Tkachev. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds. Nanosystems: Phys. Chem. Math. 5, 294 (2014).

  14. K.F. Mak, L. Ju, F. Wang, T.F. Heinz. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341 (2012).
    https://doi.org/10.1016/j.ssc.2012.04.064

  15. Chemistry of Heterocyclic Compounds. Vol. 18. The Cyanine Dyes and Related Compounds. Edited by F.M. Hamer (Wiley, 1964) [ISBN: 9780470381816].

  16. A.V. Kulinich, N.A. Derevyanko, A.A. Ishchenko. Synthesis and spectral properties of malononitrile-based merocyanine dyes. Russ. Chem. Bull. 54, 2820 (2005).
    https://doi.org/10.1007/s11172-006-0196-0

  17. A.A. Ishchenko, A.V. Kulinich, S.L. Bondarev, V.N. Knyukshto. Electronic structure and fluorescent properties of malononitrile-based merocyanines with positive and negative solvatochromism. Optics Spectrosc. 104, 57 (2008).
    https://doi.org/10.1134/S0030400X08010086

  18. S. Cambr’e, J. Campo, C. Beirnaert, C. Verlackt, P. Cool, W. Wenseleers. Asymmetric dyes align inside carbon nanotubes to yield a large nonlinear optical response. Nat. Nanotechnol. 10, 248 (2015).
    https://doi.org/10.1038/nnano.2015.1

  19. C.J. MacNevin, D. Gremyachinskiy, C.-W. Hsu, L. Li, M. Rougie, T.T. Davis, K.M. Hahn. Environment-sensing merocyanine dyes for live cell imaging applications. Bioconjugate Chem. 24, 215 (2013).
    https://doi.org/10.1021/bc3005073

  20. A.V. Kulinich, A.A. Ishchenko, A.K. Chibisov, G.V. Zakharova. Effect of electronic asymmetry and the polymethine chain length on photoprocesses in merocyanine dyes. J. Photochem. Photobiol. A 91, 274 (2014).
    https://doi.org/10.1016/j.jphotochem.2013.09.016

  21. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko et al. Gaussian 09, Rev. D.01 (Gaussian, Inc., 2009).

  22. D. Pandey, R. Reifenberger, R. Piner. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf. Sci. 602, 1607 (2008).
    https://doi.org/10.1016/j.susc.2008.02.025

  23. P. Lutsyk, R. Arif, J. Hruby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, G.A. Rance, M. Fay, Y. Piryatinski, O. Kachkovsky, A. Verbitsky, A. Rozhin. A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light Sci. Appl. 5, e16028 (2016).
    https://doi.org/10.1038/lsa.2016.28

  24. P.A. Gowrisankar, K. Udhayakumar. Electronic properties of boron and silicon doped (10, 0) zigzag single-walled carbon nanotube upon gas molecular adsorption: a DFT comparative study. J. Nanomater. 2013, 293936 (2013).

  25. D. Hedman, H. Reza Barzegar, A. Ros’en, T. W?agberg, J.A. Larsson. On the stability and abundance of single walled carbon nanotubes. Sci. Rep. 5, 16850 (2015).
    https://doi.org/10.1038/srep16850
Published
2018-07-03
How to Cite
Kulinich, A., Ishchenko, A., Sharanda, L., Shulga, S., & Ogenko, V. (2018). Sorption of Polymethine Dyes on Nanographites and Carbon Nanotubes. Ukrainian Journal of Physics, 63(5), 379. https://doi.org/10.15407/ujpe63.5.379
Section
Surface physics