Probing Brønsted Acidity of Protonic Zeolites with Variable-Temperature Infrared Spectroscopy

Authors

  • C. O. Areán Department of Chemistry, University of the Balearic Islands

DOI:

https://doi.org/10.15407/ujpe63.6.538

Keywords:

Brønsted acidity, infrared spectroscopy, zeolites

Abstract

Most industrial applications of zeolites as solid-acid catalysts rely on their high Brønsted acidity, which affects both catalytic activity and selectivity, and hence the convenience to find an accurate experimental technique for measuring the acid strength. The enthalpy change, ΔH0, involved in the hydrogen bonding interaction between a weak base (such as carbon monoxide) and the Brønsted acid [Si(OH)Al] hydroxyl groups should correlate directly with the zeolite acid strength. However, on account of simplicity, the bathochromic shift of the O–H stretching frequency, Δv(OH), is usually measured by IR spectroscopy at a (fixed) low temperature in-
stead of ΔH0 and correlated with the acid strength for ranking the zeolite acidity. Herein, the use of variable-temperature IR spectroscopy to determine simultaneously ΔH0 and Δv(OH) is demonstrated, followed by a review of recent experimental results showing that the practice of ranking the acid strength by the corresponding O–H frequency shift probed by a weak base could be misleading; and that can be so much the case of zeolites showing a wide range of structure types.

References

<ol>
<li>R. Szostak. Molecular Sieves: Principles of Synthesis and Identification (Van Nostrand Reinhold, 1989).
</li>
<li>M.G. Clerici. Zeolites for fine chemicals production. Top. Catal. 13 (4), 373 (2000).
<a href="https://doi.org/10.1023/A:1009063106954">https://doi.org/10.1023/A:1009063106954</a>
</li>
<li>B. Xu, C. Sievers, S.B. Hong, R. Prins, J.A. van Bokhoven. Catalytic activity of Bronsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. J. Catal. 244, 163 (2006).
<a href="https://doi.org/10.1016/j.jcat.2006.08.022">https://doi.org/10.1016/j.jcat.2006.08.022</a>
</li>
<li>D.P. Serrano, R.A. Garc’?a, G. Vicente, M. Linares, D. Proch’azkov’a, J. ? Cejka. Acidic and catalytic properties of hierarchical zeolites and hybrid ordered mesoporous materialsassembled from MFI protozeolitic units. J. Catal. 279, 366 (2011).
<a href="https://doi.org/10.1016/j.jcat.2011.02.007">https://doi.org/10.1016/j.jcat.2011.02.007</a>
</li>
<li>E.T.C. Vogt, G.T. Whiting, A.D. Chowdhury, B.M. Weckhuysen. Zeolites and zeotypes for oil and gas conversion. In Advances in Catalysis. Edited by F.C. Jentoft (Academic Press, 2015), 58, p. 143.
<a href="https://doi.org/10.1016/bs.acat.2015.10.001">https://doi.org/10.1016/bs.acat.2015.10.001</a>
</li>
<li>K.A. Tarach, K. Gora-Marek, J. Martinez-Triguero, I. Melian-Cabrera. Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catal. Sci. Technol. 7, 858 (2017).
<a href="https://doi.org/10.1039/C6CY02609E">https://doi.org/10.1039/C6CY02609E</a>
</li>
<li>P. Losch, A.B. Pinar, M.G. Willinger, K. Soukup, S. Chavan, B. Vincent, P. Pale, B. Louis. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. J. Catal. 345, 11 (2017).
<a href="https://doi.org/10.1016/j.jcat.2016.11.005">https://doi.org/10.1016/j.jcat.2016.11.005</a>
</li>
<li>J. ? Cejka, R.E. Morris, D.P. Serrano. Catalysis on zeolites – catalysis science & technology. Catal. Sci. Technol. 6, 2465 (2016).
<a href="https://doi.org/10.1039/C6CY90042A">https://doi.org/10.1039/C6CY90042A</a>
</li>
<li>W.E. Farneth, R.J. Gorte. Methods for characterizing zeolite acidity. Chem. Rev. 95, 615 (1995).
<a href="https://doi.org/10.1021/cr00035a007">https://doi.org/10.1021/cr00035a007</a>
</li>
<li> A.L. Blumenfeld, J.J. Fripiat. 27Al 1H REDOR NMR and 27Al spin-echo editing: A new way to characterize Bronsted and Lewis acidity in zeolites. J. Phys. Chem. B 101, 6670 (1997).
<a href="https://doi.org/10.1021/jp970564y">https://doi.org/10.1021/jp970564y</a>
</li>
<li> C. Busco, A. Barbaglia, M. Broyer, V. Bolis, G.M. Foddanu, P. Ugliengo. Characterisation of Lewis and Bronsted acidic sites in H-MFI and H-BEA zeolites: a thermodynamic and ab initio study. Thermochim. Acta 418, 3 (2004).
<a href="https://doi.org/10.1016/j.tca.2003.11.050">https://doi.org/10.1016/j.tca.2003.11.050</a>
</li>
<li> L. Peng, Y. Liu, N. Kim, J.E. Readman, C.P. Grey. Detection of Bronsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nature Mater. 4, 216 (2005).
<a href="https://doi.org/10.1038/nmat1332">https://doi.org/10.1038/nmat1332</a>
</li>
<li> J. Vaculik, M. Setnicka, R. Bulanek. Study of Bronsted acid site in H-MCM-22 zeolite by temperature-programmed desorption of ammonia. J. Therm. Anal. Calorim. 125, 1217 (2016).
<a href="https://doi.org/10.1007/s10973-016-5349-2">https://doi.org/10.1007/s10973-016-5349-2</a>
</li>
<li> A. Auroux. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 19, 205 (2002).
<a href="https://doi.org/10.1023/A:1015367708955">https://doi.org/10.1023/A:1015367708955</a>
</li>
<li> M. Niwa, N. Katada. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review. Chem. Rec. 13, 432 (2013).
<a href="https://doi.org/10.1002/tcr.201300009">https://doi.org/10.1002/tcr.201300009</a>
</li>
<li> E.G. Derouane, J.C. V’edrine, R. Ramos Pinto, P.M. Borges, L. Costa, M.A.N.D.A. Lemos, F. Lemos, F.R. Ribeiro. The acidity of zeolites: Concepts, measurements and relation to catalysis: A review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. Sci. Eng. 55, 454 (2013).
<a href="https://doi.org/10.1080/01614940.2013.822266">https://doi.org/10.1080/01614940.2013.822266</a>
</li>
<li> A. Zecchina, C. Otero Are’an. Diatomic molecular probes for mid-IR studies of zeolites. Chem. Soc. Rev. 25, 187 (1996).
<a href="https://doi.org/10.1039/CS9962500187">https://doi.org/10.1039/CS9962500187</a>
</li>
<li> E. Garrone, B. Fubini, B. Bonelli, B. Onida, C.O. Are’an. Thermodynamics of CO adsorption on the zeolite Na-ZSM-5 A combined microcalorimetric and FTIR spectroscopic study. Phys. Chem. Chem. Phys. 1, 513 (1999).
<a href="https://doi.org/10.1039/a806973e">https://doi.org/10.1039/a806973e</a>
</li>
<li> K. Hadjiivanov. Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Adv. Catal. 57, 99 (2014).
<a href="https://doi.org/10.1016/B978-0-12-800127-1.00002-3">https://doi.org/10.1016/B978-0-12-800127-1.00002-3</a>
</li>
<li> W. Daniell, N.Y. Topsoe, H. Knozinger. An FTIR study of the surface acidity of USY zeolites: Comparison of CO, CD3CN, and C5H5N probe molecules. Langmuir 17, 6233 (2001).
<a href="https://doi.org/10.1021/la010345a">https://doi.org/10.1021/la010345a</a>
</li>
<li> C. Lamberti, A. Zecchina, E. Groppo, S. Bordiga. Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. Chem. Soc. Rev. 39, 4951 (2010).
<a href="https://doi.org/10.1039/c0cs00117a">https://doi.org/10.1039/c0cs00117a</a>
</li>
<li> C.O. Are’an. Dinitrogen and carbon monoxide hydrogen bonding in protonic zeolites: Studies from variable-temperature infrared spectroscopy. J. Mol. Struct. 880, 31 (2008).
<a href="https://doi.org/10.1016/j.molstruc.2007.11.004">https://doi.org/10.1016/j.molstruc.2007.11.004</a>
</li>
<li> A. Pulido, M.R. Delgado, O. Bludsk’y, M. Rube?s, P. Nachtigall, C.O. Are’an. Combined DFT/CC and IR spectroscopic studies on carbon dioxide adsorption on the zeolite H-FER. Energy Environ. Sci. 2, 1187 (2009).
<a href="https://doi.org/10.1039/b911253g">https://doi.org/10.1039/b911253g</a>
</li>
<li> M. Mihaylov, S. Andonova, K. Chakarova, A. Vimont, E. Ivanova, N. Drenchev, K. Hadjiivanov. An advanced approach for measuring acidity of hydroxyls in confined space: a FTIR study of low-temperature CO and 15N2 adsorption on MOF samples from the MIL-53(Al) series. Phys. Chem. Chem. Phys. 17, 24304 (2015).
<a href="https://doi.org/10.1039/C5CP04139B">https://doi.org/10.1039/C5CP04139B</a>
</li>
<li> J.A. Lercher, C. Grundling, G. Eder-Mirth. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal. Today 27, 353 (1996).
<a href="https://doi.org/10.1016/0920-5861(95)00248-0">https://doi.org/10.1016/0920-5861(95)00248-0</a>
</li>
<li> V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R.A. Catlow. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 44, 7044 (2015).
<a href="https://doi.org/10.1039/C5CS00029G">https://doi.org/10.1039/C5CS00029G</a>
</li>
<li> M.R. Delgado, C. Otero Are’an. Carbon monoxide, dinitrogen and carbon dioxide adsorption on zeolite H-Beta: IR spectroscopic and thermodynamic studies. Energy 36, 5286 (2011).
<a href="https://doi.org/10.1016/j.energy.2011.06.033">https://doi.org/10.1016/j.energy.2011.06.033</a>
</li>
<li> M.R. Delgado, R. Bul’anek, P. Chlubn’a, C. Otero Are’an. Bronsted acidity of H-MCM-22 as probed by variable- temperature infrared spectroscopy of adsorbed CO and N2. Catal. Today 227, 45 (2014).
<a href="https://doi.org/10.1016/j.cattod.2013.09.013">https://doi.org/10.1016/j.cattod.2013.09.013</a>
</li>
<li> C.O. Are’an, G. Turnes Palomino, A. Zecchina, G. Spoto, S. Bordiga, P. Roy. Cation–carbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. Phys. Chem. Chem. Phys. 1, 4139 (1999).
<a href="https://doi.org/10.1039/a905717j">https://doi.org/10.1039/a905717j</a>
</li>
<li> E. Garrone, C.O. Are’an. Variable temperature infrared spectroscopy: A convenient tool for studying the thermodynamics of weak solid—gas interactions. Chem. Soc. Rev. 34, 846 (2005).
<a href="https://doi.org/10.1039/b407049f">https://doi.org/10.1039/b407049f</a>
</li>
<li> A.A. Tsyganenko, P.Yu. Storozhev, C.O. Are’an. IR-spectroscopic study of the binding isomerism of adsorbed molecules. Kinet. Catal. 45, 530 (2004).
<a href="https://doi.org/10.1023/B:KICA.0000038081.43384.56">https://doi.org/10.1023/B:KICA.0000038081.43384.56</a>
</li>
<li> P. Nachtigall, O. Bludsk’y, L. Grajciar, D. Nachtigallov’a, M.R. Delgado, C.O. Are’an. Computational and FTIR spectroscopic studies on carbon monoxide and dinitrogen adsorption on a high-silica H-FER zeolite. Phys. Chem. Chem. Phys. 11, 791 (2009).
<a href="https://doi.org/10.1039/B812873A">https://doi.org/10.1039/B812873A</a>
</li>
<li> W.J. Roth, J. ? Cejka. Two-dimensional zeolites: Dream or reality? Catal. Sci. Technol. 1, 43 (2011).
<a href="https://doi.org/10.1039/c0cy00027b">https://doi.org/10.1039/c0cy00027b</a>
</li>
<li> W.J. Roth, P. Chlubn’a, M. Kubu, D. Vitvarov’a. Swelling of MCM-56 and MCM-22P with a new medium – surfactant-tetramethylammonium hydroxide mixtures. Catal. Today 204, 8 (2013).
<a href="https://doi.org/10.1016/j.cattod.2012.07.040">https://doi.org/10.1016/j.cattod.2012.07.040</a>
</li>
<li> C.O. Are’an, M.R. Delgado, P. Nachtigall, H.V. Thang, M. Rube?s, R. Bul’anek, P. Chlubn’a-Elia?sov’a. Measuring the Bronsted acid strength of zeolites – does it correlate with the O–H frequency shift probed by a weak base? Phys. Chem. Chem. Phys. 16, 10129 (2014).
<a href="https://doi.org/10.1039/C3CP54738H">https://doi.org/10.1039/C3CP54738H</a>
</li>
<li> A. Zecchina, S. Bordiga, G. Spoto, D. Scarano, G. Petrini, G. Leofanti, M. Padovan, C.O. Are’an. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. J. Chem. Soc. Faraday Trans. 88, 2959 (1992).
<a href="https://doi.org/10.1039/FT9928802959">https://doi.org/10.1039/FT9928802959</a>
</li>
<li> V. Dondur, V. Rakic, L. Damjanovic, A. Auroux. Comparative study of the active sites in zeolites by different probe molecules. J. Serb. Chem. Soc. 70, 457 (2005).
<a href="https://doi.org/10.2298/JSC0503457D">https://doi.org/10.2298/JSC0503457D</a>
</li>
<li> C.O. Are’an, O.V. Manoilova, A.A. Tsyganenko, G.T. Palomino, M.P. Mentruit, F. Geobaldo, E. Garrone. Thermodynamics of Hydrogen bonding between CO and the supercage Bronsted acid sites of the H–Y zeolite – studies from variable temperature IR spectrometry. Eur. J. Inorg. Chem. 1739 (2001).
</li>
<li> C.C. Tsai, C.Y. Zhong, L. Wang, S.B. Liu, W. Chen, T.C.Tsai.Vapor phaseBeckmann rearrangement of cyclohexanone oxime overMCM-22.Appl.Catal.A 267, 87 (2004).
<a href="https://doi.org/10.1016/j.apcata.2004.02.026">https://doi.org/10.1016/j.apcata.2004.02.026</a>
</li>
<li> Z. Zhu, Q. Chen, Z. Xie, W. Yang, C. Li. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Micropor. Mesopor. Mater. 88, 16 (2006).
<a href="https://doi.org/10.1016/j.micromeso.2005.08.021">https://doi.org/10.1016/j.micromeso.2005.08.021</a></li>

Downloads

Published

2018-07-12

How to Cite

Areán, C. O. (2018). Probing Brønsted Acidity of Protonic Zeolites with Variable-Temperature Infrared Spectroscopy. Ukrainian Journal of Physics, 63(6), 538. https://doi.org/10.15407/ujpe63.6.538

Issue

Section

Surface physics