Dependence of Soft Phonon Spectra on Flexoelectric Coupling in Ferroelectrics
DOI:
https://doi.org/10.15407/ujpe63.2.168Keywords:
Landau–Ginzburg–Devonshire theory, flexoelectric coupling, soft phonon modesAbstract
Analytical expressions describing the frequency dispersion of the soft transverse acoustic (TA)
and optic (TO) phonon modes in uniaxial ferroelectrics, as well as their dependence on the
flexoelectric coupling constant f, have been analyzed in the framework of the Landau–Ginzburg–
Devonshire theory. A critical behavior of the TA mode with respect to the f magnitude is
revealed.
References
<a href="https://doi.org/10.1007/978-94-007-5992-3">https://doi.org/10.1007/978-94-007-5992-3</a>
</li>
<li>V.S. Mashkevich, K.B. Tolpygo. The interaction of vibrations of nonpolar crystals with electric fields. Zh. Eksp. Teor. Fiz. 31, 520 (1957) (in Russian).
</li>
<li>A.K. Tagantsev. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)
<a href="https://doi.org/10.1103/PhysRevB.34.5883">https://doi.org/10.1103/PhysRevB.34.5883</a>
</li>
<li>P. Zubko, G. Catalan, A.K. Tagantsev. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387 (2013).
<a href="https://doi.org/10.1146/annurev-matsci-071312-121634">https://doi.org/10.1146/annurev-matsci-071312-121634</a>
</li>
<li>P.V. Yudin, A.K. Tagantsev. Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013).
<a href="https://doi.org/10.1088/0957-4484/24/43/432001">https://doi.org/10.1088/0957-4484/24/43/432001</a>
</li>
<li>S.V. Kalinin, A.N. Morozovska. Multiferroics: Focusing the light on flexoelectricity (Comment). Nat. Nanotechnol. 10, 916 (2015).
<a href="https://doi.org/10.1038/nnano.2015.213">https://doi.org/10.1038/nnano.2015.213</a>
</li>
<li>A. Kvasov, A.K. Tagantsev. Dynamic flexoelectric effect in perovskites from first-principles calculations. Phys. Rev. B 92, 054104 (2015).
<a href="https://doi.org/10.1103/PhysRevB.92.054104">https://doi.org/10.1103/PhysRevB.92.054104</a>
</li>
<li>A.K. Tagantsev, L. Eric Cross, J. Fousek. Domains in Ferroic Crystals and Thin Films (Springer, 2010).
<a href="https://doi.org/10.1007/978-1-4419-1417-0">https://doi.org/10.1007/978-1-4419-1417-0</a>
</li>
<li>G. Catalan, L.J. Sinnamon, J.M. Gregg. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter 16, 2253 (2004).
<a href="https://doi.org/10.1088/0953-8984/16/13/006">https://doi.org/10.1088/0953-8984/16/13/006</a>
</li>
<li> M.S. Majdoub, R. Maranganti, P. Sharma. Understanding the origins of the intrinsic dead layer effect in nanocapacitors. Phys. Rev. B 79, 115412 (2009).
<a href="https://doi.org/10.1103/PhysRevB.79.115412">https://doi.org/10.1103/PhysRevB.79.115412</a>
</li>
<li> M.S. Majdoub, P. Sharma, T. Cagin. Enhanced size-dependent piezoelectricity and elasticity in nanostructures 172 ISSN 2071-0186. Ukr. J. Phys. 2018. Vol. 63, No. 2Dependence of Soft Phonon Spectra due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008).
</li>
<li> R. Maranganti, P. Sharma. Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B 80, 054109 (2009).
<a href="https://doi.org/10.1103/PhysRevB.80.054109">https://doi.org/10.1103/PhysRevB.80.054109</a>
</li>
<li> G. Catalan, A. Lubk, A.H.G. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D.H.A. Blank, B. Noheda. Flexoelectric rotation of polarization in ferro-electric thin films. Nat. Mater. 10, 963 (2011).
<a href="https://doi.org/10.1038/nmat3141">https://doi.org/10.1038/nmat3141</a>
</li>
<li> W. Cochran, Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412 (1959).
<a href="https://doi.org/10.1103/PhysRevLett.3.412">https://doi.org/10.1103/PhysRevLett.3.412</a>
</li>
<li> G. Shirane, J.D. Axe, J. Harada, J.P. Remeika. Soft ferro-electric modes in lead titanate. Phys. Rev. B 2, 155 (1970).
<a href="https://doi.org/10.1103/PhysRevB.2.155">https://doi.org/10.1103/PhysRevB.2.155</a>
</li>
<li> W. Cochran. Dynamical, scattering and dielectric properties of ferroelectric crystals. Adv. Phys. 18, 157 (1969).
<a href="https://doi.org/10.1080/00018736900101297">https://doi.org/10.1080/00018736900101297</a>
</li>
<li> G. Shirane, Y. Yamada. Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys. Rev. 177, 858 (1969).
<a href="https://doi.org/10.1103/PhysRev.177.858">https://doi.org/10.1103/PhysRev.177.858</a>
</li>
<li> R. Currat, H. Buhay, C.H. Perry, A.M. Quittet. Inelastic neutron scattering study of anharmonic interactions in orthorhombic KNbO3. Phys. Rev. B 40, 10741 (1989).
<a href="https://doi.org/10.1103/PhysRevB.40.10741">https://doi.org/10.1103/PhysRevB.40.10741</a>
</li>
<li> I. Etxebarria, M. Quilichini, J.M. Perez-Mato, P. Boutrouille, F.J. Zuniga, T. Breczewski. Inelastic neutron scattering investigation of external modes in incommensurate and commensurate A2BX4 materials. J. Phys. Condens. Matter 4, 8551 (1992).
<a href="https://doi.org/10.1088/0953-8984/4/44/016">https://doi.org/10.1088/0953-8984/4/44/016</a>
</li>
<li> J. Hlinka, M. Quilichini, R. Currat, J.F. Legrand. Dynamical properties of the normal phase of betaine calcium chloride dihydrate. I. Experimental results. J. Phys. Condens. Matter 8, 8207 (1996).
<a href="https://doi.org/10.1088/0953-8984/8/43/016">https://doi.org/10.1088/0953-8984/8/43/016</a>
</li>
<li> J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, S.J. Zhang. Origin of the "Waterfall" effect in phonon dispersion of relaxor perovskites. Phys. Rev. Lett. 91, 107602 (2003).
<a href="https://doi.org/10.1103/PhysRevLett.91.107602">https://doi.org/10.1103/PhysRevLett.91.107602</a>
</li>
<li> V. Goian, S. Kamba, O. Pacherova, J. Drahokoupil, L. Palatinus, M. Dusek, J. Rohl?cek, M. Savinov, F. Laufek, W. Schranz, A. Fuith, M. Kachl?k, K. Maca, A. Shkabko, L. Sagarna, A. Weidenkaff, A.A. Belik. Antiferrodistortive phase transition in EuTiO3. Phys. Rev. B 86, 054112 (2012).
<a href="https://doi.org/10.1103/PhysRevB.86.054112">https://doi.org/10.1103/PhysRevB.86.054112</a>
</li>
<li> Jong-Woo Kim, P. Thompson, S. Brown, P.S. Normile, J.A. Schlueter, A. Shkabko, A. Weidenkaff, P.J. Ryan. Emergent superstructural dynamic order due to competing antiferroelectric and antiferrodistortive instabilities in bulk EuTiO3. Phys. Rev. Lett. 110, 027201 (2013).
<a href="https://doi.org/10.1103/PhysRevLett.110.027201">https://doi.org/10.1103/PhysRevLett.110.027201</a>
</li>
<li> R.G. Burkovsky, A.K. Tagantsev, K. Vaideeswaran, N. Setter, S.B. Vakhrushev, A.V. Filimonov, A. Shaganov et al. Lattice dynamics and antiferroelectricity in PbZrO3 tested by x-ray and Brillouin light scattering. Phys. Rev. B 90, 144301 (2014).
<a href="https://doi.org/10.1103/PhysRevB.90.144301">https://doi.org/10.1103/PhysRevB.90.144301</a>
</li>
<li> J. Hlinka, I. Gregora, V. Vorl?cek. Complete spectrum of long-wavelength phonon modes in Sn2P2S6 by Raman scattering. Phys. Rev. B 65, 064308 (2002).
<a href="https://doi.org/10.1103/PhysRevB.65.064308">https://doi.org/10.1103/PhysRevB.65.064308</a>
</li>
<li> A. Kohutych, R. Yevych, S. Perechinskii, V. Samulionis, J. Banys, Yu. Vysochanskii. Sound behavior near the Lifshitz point in proper ferroelectrics. Phys. Rev. B 82, 054101 (2010).
<a href="https://doi.org/10.1103/PhysRevB.82.054101">https://doi.org/10.1103/PhysRevB.82.054101</a>
</li>
<li> A. Kohutych, R. Yevych, S. Perechinskii, Y. Vysochanskii. Acoustic attenuation in ferroelectric Sn2P2S6 crystals. Open Phys. 8, 905 (2010).
<a href="https://doi.org/10.2478/s11534-010-0016-x">https://doi.org/10.2478/s11534-010-0016-x</a>
</li>
<li> Yu.M. Vysochanskii, A.A. Kohutych, A.V. Kityk, A.V. Zadorozhna, M.M. Khoma, A.A. Grabar. Tricritical behavior of Sn2P2S6 ferroelectrics at hydrostatic pressure. Ferro-electrics 399, 83 (2010).
<a href="https://doi.org/10.1080/00150193.2010.489866">https://doi.org/10.1080/00150193.2010.489866</a>
</li>
<li> R.M. Yevych, Yu.M. Vysochanskii, M.M. Khoma, S.I. Perechinskii. Lattice instability at phase transitions near the Lifshitz point in proper monoclinic ferroelectrics. J. Phys. Condens. Matter 18, 4047 (2006).
<a href="https://doi.org/10.1088/0953-8984/18/16/011">https://doi.org/10.1088/0953-8984/18/16/011</a>
</li>
<li> A.N. Morozovska, Yu.M. Vysochanskii, O.V. Varenyk, M.V. Silibin, S.V. Kalinin, E.A. Eliseev. Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics. Phys. Rev. B 92, 094308 (2015).
<a href="https://doi.org/10.1103/PhysRevB.92.094308">https://doi.org/10.1103/PhysRevB.92.094308</a>
</li>
<li> A.N. Morozovska, E.A. Eliseev, Ch.M. Scherbakov, Yu.M. Vysochanskii. The influence of elastic strain gradient on the upper limit of flexocoupling strength, spatially-modulated phases and soft phonon dispersion in ferroics. Phys. Rev. B 94, 174112 (2016).
<a href="https://doi.org/10.1103/PhysRevB.94.174112">https://doi.org/10.1103/PhysRevB.94.174112</a>
</li>
<li> A.N. Morozovska, M.D. Glinchuk, E.A. Eliseev, Yu.M. Vysochanskii. Flexocoupling-induced soft acoustic mode and the spatially modulated phases in ferroelectrics. Phys. Rev. B 96, 094111 (2017).
<a href="https://doi.org/10.1103/PhysRevB.96.094111">https://doi.org/10.1103/PhysRevB.96.094111</a>
</li>
<li> L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Butterworth-Heinemann, 1998).
</li>
<li> G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N Krainik, R.E. Pasynkov, A.I. Sokolov. Ferroelectrics and Related Materials (Gordon and Breach, 1984).</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.