Stochastic Diffusion of Energetic Ions in Wendelstein-Type Stellarators

Authors

  • A. V. Tykhyy Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.6.495

Keywords:

stochastic diffusion, stellarators, particle orbits, adiabatic invariants

Abstract

The collisionless stochastic diffusion of energetic ions in optimized stellarators of the Wendelstein type has been considered. The phenomenon concerned was predicted earlier in the framework of a simplified theory describing the separatrix crossing by ions. The jumps of the adiabatic invariant in magnetic configurations of a stellarator are calculated. The analysis of the results obtained confirms the importance of the stochastic diffusion and demonstrates that the diffusion coefficient can considerably exceed the available result.

References

<ol>
<li>J. Nuhrenberg, R. Zille. Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113 (1988).
<a href="https://doi.org/10.1016/0375-9601(88)90080-1">https://doi.org/10.1016/0375-9601(88)90080-1</a>
</li>
<li>J. Nuhrenberg, W. Lotz, S. Gori. Theory of fusion plasma. In Proc. Joint Varenna-Lausanne Int. Workshop (Varenna, Italy, 1994) (Editrice Compositori, Bologna, 1994). p. 3.
</li>
<li>C.D. Beidler, Ya.I. Kolesnichenko, V.S. Marchenko, I.N. Sidorenko, H. Wobig. Stochastic diffusion of energetic ions in optimized stellarators. Phys. Plasmas 8, 2731 (2001).
<a href="https://doi.org/10.1063/1.1365958">https://doi.org/10.1063/1.1365958</a>
</li>
<li>A.V. Timofeev. On the constancy of an adiabatic invariant when the nature of the motion changes. Sov. Phys. JETP 48, 656 (1978).
</li>
<li>J.R. Cary, D.F. Escande, J.L. Tennyson. Adiabatic-invariant change due to separatrix crossing. Phys. Rev. A 34, 4256 (1986).
<a href="https://doi.org/10.1103/PhysRevA.34.4256">https://doi.org/10.1103/PhysRevA.34.4256</a>
</li>
<li>A.I. Neishtadt. Change of an adiabatic invariant at a separatrix. Sov. J. Plasma Phys. 12, 568 (1986).
</li>
<li>J.R. Cary, S.G. Shasharina. Helical plasma confinement devices with good confinement properties. Phys. Rev. Lett. 78, 674 (1997).
<a href="https://doi.org/10.1103/PhysRevLett.78.674">https://doi.org/10.1103/PhysRevLett.78.674</a>
</li>
<li>R.G. Littlejohn. Variational principles of guiding centre motion. J. Plasma Phys. 29, 111 (1983).
<a href="https://doi.org/10.1017/S002237780000060X">https://doi.org/10.1017/S002237780000060X</a>
</li>
<li>R.G. Littlejohn. Hamiltonian perturbation theory in non-canonical coordinates. J. Math. Phys. 23, 742 (1982).
<a href="https://doi.org/10.1063/1.525429">https://doi.org/10.1063/1.525429</a>
</li>
<li> V.I. Arnold. Mathematical Methods of Classical Mechanics (Springer, 1978).
<a href="https://doi.org/10.1007/978-1-4757-1693-1">https://doi.org/10.1007/978-1-4757-1693-1</a>
</li>
<li> T. Andreeva. Vacuum Magnetic Configurations of Wendelstein 7-X. Preprint IPP III/270 (Max-Planck-Institut f?ur Plasmaphysik, 2002).</li>

Published

2018-07-12

How to Cite

Tykhyy, A. V. (2018). Stochastic Diffusion of Energetic Ions in Wendelstein-Type Stellarators. Ukrainian Journal of Physics, 63(6), 495. https://doi.org/10.15407/ujpe63.6.495

Issue

Section

Plasma physics