Morphology and Phase Transformation of Copper/Aluminium Oxide Films

  • A. Panthawan Graduate School Chiang Mai University, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • T. Kumpika Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • W. Sroila Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • E. Kantarak Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • W. Thongpan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Pooseekheaw Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • R. Sornphanpee Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • N. Jumrus Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Sanmuangmoon Faculty of Science, Chiang Mai University
  • A. Tuantranont Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University
  • P. Singjai Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University
  • W. Thongsuwan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Center of Advanced Materials of Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University
Keywords: Sparking Process, CuAlO2, annealing, phase transformation

Abstract

Сopper aluminium oxide (CuAlO2) was successfully prepared within the single-step sparking process at the atmospheric pressure. The as-deposited films were then annealed at 400, 900, 1000, and 1100 ∘C in an oven. The results have shown that the annealing temperature has direct effect on the morphology, phase transformation, and optical properties. CuAlO2 in the delafossite phase was formed on the annealed films at temperatures higher than 900 ∘C. Furthermore, the energy band gaps of the annealed films were linearly increased from 3.3 to 3.8 eV with increasing the annealing temperature from 400 to 1100 ∘C due to a reduction of the oxygen deficit of films at high annealing temperatures.

References


  1. M. Miclaua, N. Miclaub, R. Banicaa et al. Effect of polymorphism on photovoltaic performance of CuAlO2 delafossite nanomaterials for p-type dye-sensitized solar cells application. Materials Today: Proceedings 4, 6975 (2017).
    https://doi.org/10.1016/j.matpr.2017.07.027

  2. S. Pantian, R. Sakdanuphab, A. Sakulkalavek. Enhancing the electrical conductivity and thermoelectric figure of merit of the p-type delafossite CuAlO2 by Ag2O addition. Current Appl. Phys. 17, 1264-127 (2017).
    https://doi.org/10.1016/j.cap.2017.06.011

  3. L. Hao, N. Feng, Y. Jinc et al. CuAlO2 thermoelectric compacts by SPS and thermoelectric performance improvement by orientation control. Ceramics International 34, 12154 (2017).
    https://doi.org/10.1016/j.ceramint.2017.06.073

  4. K. Vojisavljevic, B. Malic, M. Senna et al. Solid state synthesis of nano-boehmite-derived CuAlO2 powder and processing of the ceramics. J. Europ. Ceramic Society 33, 3231 (2013).
    https://doi.org/10.1016/j.jeurceramsoc.2013.05.025

  5. T. Suriwong, T. Thongtem, S.Thongtem. CuAlO2 powder dispersed in composite gel electrolyte for application in quasi-solid state dye-sensitized solar cells. Mater. Sci. Semicond. Proc. 39, 348 (2015).
    https://doi.org/10.1016/j.mssp.2015.05.010

  6. A.N. Banerjee, S. Nandy, C.K. Ghosh et al. Fabrication and characterization of all-oxide heterojunction p-CuAlO2+x/n-Zn1?xAlxO transparent diode for potential application in "invisible electronics". Thin Solid Films 515, 7324 (2007).
    https://doi.org/10.1016/j.tsf.2007.02.087

  7. I.Y.Y. Bu. Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction. Superlatt. Microstruct. 60, 160 (2013).
    https://doi.org/10.1016/j.spmi.2013.04.031

  8. C.-L. Jiang, Q.J. Liu, F.S. Liu et al. Stability and electronic properties of CuAlO2 (1120) surfaces. Current Appl. Phys. 17, 126 (2017)
    https://doi.org/10.1016/j.cap.2016.11.024

  9. K.R. Murali, M. Balasubramanian. Properties of CuAlO2 thin films deposited by polyacrylamide gel route. Mater. Sci. Semicond. Process. 16, 38 (2013).
    https://doi.org/10.1016/j.mssp.2012.07.001

  10. R.E. Stauber, J.D. Perkins, P.A. Parilla et al. Thin film growth of transparent p-type CuAlO2. Electrochem. Solid-State Lett. 2, 654 (1999).
    https://doi.org/10.1149/1.1390938

  11. W. Lan, M. Zhang, G.B. Dong et al. The effect of oxygen on the properties of transparent conducting Cu–O thin films deposited by rf magnetron sputtering. Mater. Sci. Engin. B 52, 75 (2009).

  12. C.K. Ghosh, S.R. Popuri, T.U. Mahesh et al. Preparation of nanocrystalline CuAlO2 through sol-gel route. J. Sol-Gel Sci. Technol. 139, 155 (2007).

  13. K. Tonooka, K. Shimokawa, O. Nishimura. Properties of copper-aluminum oxide films prepared by solution methods. Thin Solid Films 411, 129 (2002).
    https://doi.org/10.1016/S0040-6090(02)00201-8

  14. H. Kawazoe, M. Yasukawa, H. Hyodo et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939 (1997).
    https://doi.org/10.1038/40087

  15. S.H. Chiu, J.C.A. Huang. Characterization of p-type CuAlO2 thin films grown by chemical solution deposition. Surface & Coatings Technology 231, 239 (2013).
    https://doi.org/10.1016/j.surfcoat.2012.03.003

  16. Y. Chuminjak, S. Daothong, A. Kuntarug et al. High-performance electrochemical energy storage electrodes based on nickel oxidecoated nickel foam prepared by sparking method. Electrochimica Acta 238, 298 (2017).
    https://doi.org/10.1016/j.electacta.2017.03.190

  17. T. Ghosh, B. Satpati. Role of oxygen in wetting of copper nanoparticles on silicon surfaces at elevated temperature. Beilstein J. Nanotechnol. 8, 425 (2017).
    https://doi.org/10.3762/bjnano.8.45

  18. Y. Tian, C. Hang, C. Wang et al. Evolution of Cu/Al intermetallic compounds in the copper bump bonds during aging process. Conference on Electronic Packaging Technology, 2007.
    https://doi.org/10.1109/ICEPT.2007.4441444

  19. P. Niggli. Die kristallstruktur einiger oxyde I. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 57, 253 (1922).

  20. J.C. Lambert, W. Eysel. Mineralogical-Petrograph. Institute, Universitat Heidelberg, Germany, ICDD Grant-in-Aid (1980).

  21. W. Gessner. ? Uber die Modifikationen der "Aluminate" MeI AlO2 des einwertigen Ag, Cu und Tl. Z. Anorg. Allg. Chem. 352, 145 (1967).
    https://doi.org/10.1002/zaac.19673520305

  22. S. Liu, Z.Wu, Y. Zhang et al. Strong temperature-dependent crystallization, phase transition, optical and electrical characteristics of p-type CuAlO2 thin films. Phys. Chem. Chem. Phys. 17, 557 (2015).
    https://doi.org/10.1039/C4CP04009K

  23. J. Luo, Y.J. Lin, H.C. Hung et al. Tuning the formation of p-type defects by peroxidation of CuAlO2 films. J. Appl. Phys. 114, 033712 (2013).
    https://doi.org/10.1063/1.4816044

  24. F. Parmigiani, G. Pacchioni, F. Illas et al. Studies of the Cu-O bond in cupric oxide by X-ray photoelectron spectroscopy and ab initio electronic structure models. J. Electron Spectrosc. Relat. Phenom. 59, 255 (1992).
    https://doi.org/10.1016/0368-2048(92)87005-7

  25. J.C. Klein, C.P. Li, D.M. Hercules et al. Decomposition of copper compounds in X-ray photoelectron spectrometers. Appl. Spectrosc. 38, 729 (1984).
    https://doi.org/10.1366/0003702844555016

  26. A.S. Reddy, P.S. Reddy, S. Uthanna et al. Characterization of CuAlO2 films prepared by dc reactive magnetron sputtering. J. Mater. Sci.: Mater. Electron. 17, 615 (2006).
    https://doi.org/10.1007/s10854-006-0007-2

  27. Y.J. Zhang, Z.T. Liu, D.Y. Zang et al. Effect of annealing temperature on the microstructure and optical-electrical properties of Cu–O thin films. J. Phys. Chem. Solids 74, 1672 (2013).
    https://doi.org/10.1016/j.jpcs.2013.05.028

  28. H. Hiramatsu, W.S. Seo, K. Koumoto. Electrical and optical properties of radiofrequency-sputtered thin films of (ZnO)5In2O3. Chem. Mater. 10, 3033 (1998).
    https://doi.org/10.1021/cm980173b

  29. F. Demichelis, G. Kaniadakis, A. Tagliaferro et al. New approach to optical analysis of absorbing thin solid films. Appl. Opt. 26, 1737 (1987).
    https://doi.org/10.1364/AO.26.001737

  30. G. Dong, M. Zhang, X. Zhao et al. Influence of working gas pressure on structure and properties of CuAlO2 films. J. Cryst. Growth. 311, 1256 (2009).
    https://doi.org/10.1016/j.jcrysgro.2009.01.004

  31. H. Luo, M. Jain, T.M. McCleskey et al. Optical and structural properties of single phase epitaxial p-type transparent oxide thin films. Adv. Mater. 19, 3604 (2007).
    https://doi.org/10.1002/adma.200700528

  32. C. Bouzidi, H. Bouzouita, A. Timoumi et al. Fabrication and characterization of CuAlO2 transparent thin films prepared by spray technique. Mater. Sci. Eng. B 118, 259 (2005).
    https://doi.org/10.1016/j.mseb.2004.12.039

  33. W. Lan, W. L. Cao, M. Zhang et al. Annealing effect on the structural, optical, and electrical properties of CuAlO2films deposited by magnetron sputtering. J. Mater. Sci. 44, 1594 (2009).
    https://doi.org/10.1007/s10853-008-3229-2

  34. S.Iping, Z. Lockman, S.D. Hutaglung et al. Formation of CuAlO2 Film by Ultrasonic Spray Pyrolysis. Mater. Sci. Eng. 18, 082022 (2011).

  35. Q.Wang, G.Wang, J. Jie et al. Annealing effects on optical properties of ZnO films fabricated by cathodic electrode-postion. Thin Solid Films 44, 61 (200).

  36. T. Kumpika, W. Thongsuwan, P. Singjai. Atomic force microscopy imaging of ZnO nanodots deposited on quartz by sparking off different tip shapes. Surf. Interface Anal. 39, 58 (2007).
    https://doi.org/10.1002/sia.2507

  37. J. Tauc. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin 3, 37 (1968).
    https://doi.org/10.1016/0025-5408(68)90023-8
Published
2018-07-03
How to Cite
Panthawan, A., Kumpika, T., Sroila, W., Kantarak, E., Thongpan, W., Pooseekheaw, P., Sornphanpee, R., Jumrus, N., Sanmuangmoon, P., Tuantranont, A., Singjai, P., & Thongsuwan, W. (2018). Morphology and Phase Transformation of Copper/Aluminium Oxide Films. Ukrainian Journal of Physics, 63(5), 425. https://doi.org/10.15407/ujpe63.5.425
Section
Structure of materials