Superhydrophobicity/Superhydrophilicity Transformation of Transparent PS-PMMA-SiO2 Nanocomposite Films

  • A. Sriboonruang Graduate School Chiang Mai University, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • T. Kumpika Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • W. Sroila Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • E. Kantarak Department of Physics and Materials Science, Faculty of Science, Chiang Mai University
  • P. Singjai Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University
  • W. Thongsuwan Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Materials Science Research Center, Faculty of Science, Chiang Mai University
Keywords: Superhydrophobic, Superhydrophilic, SiO2, PMMA, PS, Films, Dip coating

Abstract

A transparent superhydrophobic nanocoating with high water contact angle (>150∘ ) was successfully prepared by a simple dip coating method. The coating solutions were prepared by the dissolution of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in toluene. Fumed silica (SiO2) was then added to increase the roughness of the coating. The annealing treatment conditions were investigated to optimize the water contact angle. The heat treatment conditions and other factors were studied systematically to optimize the transmission and the contact angle of water on the films. The results have shown that the films increase with the annealing temperature. The superhydrophobicity of films is observed only in PS-consisted films after the annealing at 200 ∘C. The superhydrophobic/superhydrophilic transformation was achieved at the annealing temperature higher than 200 ∘C due to the decay of the polymer into hydrophilic monomers.

References


  1. P. Patel, C.K. Choi, D.D. Meng. Superhydrophilic surfaces for antifoqging and antifouling microfluidic devices. J. Assoc. Lab. Autom. 15(2), 114 (2010).
    https://doi.org/10.1016/j.jala.2009.10.012

  2. W. Thongsuwan, T. Kumpika, P. Singjai. Effect of high roughness on a long aging time of superhydrophilic TiO2 nanoparticle thin films. Curr. Appl. Phys. 11, 1237 (2011).
    https://doi.org/10.1016/j.cap.2011.03.002

  3. R. F?urstner, W. Barthlott, C. Neinhuis, P.Walzel.Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956 (2005).
    https://doi.org/10.1021/la0401011

  4. S. Khorsand, K. Raeissi, F. Ashrafizadeh. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process. Appl. Surf. Sci. 305, 498 (2014).
    https://doi.org/10.1016/j.apsusc.2014.03.123

  5. T. Kako, A. Nakajima, H. Irie, Z. Kato, K. Uematsu, T. Watanabe, K. Hashimoto. Adhesion and sliding of wet snow on a superhydrophobic surface with hydrophilic channels. J. Mater. Sci. 39, 547 (2004).
    https://doi.org/10.1023/B:JMSC.0000011510.92644.3f

  6. W. Intarasang, W. Thamjaree, D. Boonyawan, W. Nhuapeng. Effect of coating time on LPP treated silk fabric coated with ZnO2 nanoparticles. Chiang Mai J. Sci. 40(6), 1000 (2013).

  7. E.N. Miller, D.C. Palm, D.D. Silva, A. Parbatani, A.R. Meyers, D.L. Williams, D.E. Thompson. Microsphere lithography on hydrophobic surfaces for generating gold films that exhibit infrared localized surface plasmon resonances. J. Phys. Chem. B 117, 15313 (2013).
    https://doi.org/10.1021/jp403439e

  8. A.M. Coclite, Y. Shi, K.K. Gleason. Super-hydrophobic and oloephobic crystalline coatings by initiated chemical vapor deposition. Phys. Procedia 46, 56 (2013)
    https://doi.org/10.1016/j.phpro.2013.07.045

  9. S. Liu, S.S. Latthe, H. Yang, B. Liu, R. Xing. Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceramics Inter. 41(9), 11719 (2015).
    https://doi.org/10.1016/j.ceramint.2015.05.137

  10. D. Lopez-Torres, C. Elosua, M. Hernaez, J. Goicoechea, F.J. Arregui. From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films. Appl. Surf. Sci. 351, 1081 (2015).
    https://doi.org/10.1016/j.apsusc.2015.06.004

  11. J. Liang, K. Liu, D. Wang, H. Li, P. Li, S. Li, S. Su, S. Xu, Y. Luo. Facile fabrication of superhydrophilic/superhydrophobic surface on titanium substrate by single-step anodization and fluorination. Appl. Surf. Sci. 338, 126 (2015).
    https://doi.org/10.1016/j.apsusc.2015.02.117

  12. Y.H. Lin, K.L. Su, P.S. Tsai, F.L. Chuang, Y.M. Yang. Fabrication and characterization of transparent superhydrophilic/superhydrophobic silica nanoparticulate thin films. Thin Solid Films 519, 5450 (2011).
    https://doi.org/10.1016/j.tsf.2011.02.081

  13. F.M. Fowkes. Attractive forces at interfaces. Ind. Eng. Chem. 56, 40 (1964).
    https://doi.org/10.1021/ie50660a008

  14. K.Y. Law, H. Zhao. Surface Wetting: Characterization, Contact Angle, and Fundamentals. (Springer, 2015) [ISBN: 978-3-319-25214-8].

  15. T. Faravelli, M. Pinciroli, F. Pisano, G. Bozzano, M. Dente, E. Ranzi. Thermal degradation of polystyrene. J. Anal. Appl. Pyrolysis 60, 103 (2001).
    https://doi.org/10.1016/S0165-2370(00)00159-5

  16. J.D. Peterson, S. Vyazovkin, C.A. Wight. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 202, 775 (2001).
    https://doi.org/10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G

  17. Y.H. Hu, C.Y. Chen. Study of the thermal behaviour of poly(methyl methacrylate) initiated by lactams and thiols. Polym. Degrad. Stab. 80, 1 (2003).
    https://doi.org/10.1016/S0141-3910(02)00375-0

  18. Y.H. Hu, C.Y. Chen. The effect of end groups on the thermal degradation of poly(methyl methacrylate). Polym. Degrad. Stab. 82, 81 (2003).
    https://doi.org/10.1016/S0141-3910(03)00165-4

  19. M. Ferriol, A. Gentilhomme, M. Cochez, N. Oget, J.L. Mieloszynski. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym. Degrad. Stab. 79, 271 (2003).
    https://doi.org/10.1016/S0141-3910(02)00291-4

  20. A. Otten, S. Herminghaus. How plants keep dry: A physicist's point of view. Langmuir 20(6), 2405 (2004).
    https://doi.org/10.1021/la034961d

  21. W. Hou, Q.Wang.Wetting behavior of a SiO2–polystyrene nanocomposite surface. J. Colloid Interface Sci. 316, 206 (2007).
    https://doi.org/10.1016/j.jcis.2007.07.033

  22. J.R. Anema, A.G. Brolo, A. Felten, C. Bittencourt. Surface-enhanced Raman scattering from polystyrene on gold clusters. J. Raman Spectrosc. 41, 745 (2010).

  23. W.M. Sears, J.L. Hunt, J.R. Stevens. Raman scattering from polymerizing styrene. I. Vibrational mode analysis. J. Chem. Phys. 75(4), 1589 (1981).
    https://doi.org/10.1063/1.442262

  24. D.B. Menezes, A. Reyer, A. Marletta, M. Musso. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups. Mater. Res. Express. 754(1), 015303 (2017).
    https://doi.org/10.1088/2053-1591/4/1/015303
Published
2018-04-20
How to Cite
Sriboonruang, A., Kumpika, T., Sroila, W., Kantarak, E., Singjai, P., & Thongsuwan, W. (2018). Superhydrophobicity/Superhydrophilicity Transformation of Transparent PS-PMMA-SiO2 Nanocomposite Films. Ukrainian Journal of Physics, 63(3), 226. https://doi.org/10.15407/ujpe63.3.226
Section
General physics