Structural Properties of Lattice-Matched InGaPN on GaAs (001)

Authors

  • P. Sritonwong Nanoscience and Technology, Graduate School, Chulalongkorn University
  • S. Sanorpim Nanoscience and Technology, Graduate School, Chulalongkorn University, Department of Physics, Faculty of Science, Chulalongkorn University
  • K. Onabe Department of Advanced Materials Science, The University of Tokyo

DOI:

https://doi.org/10.15407/ujpe63.3.276

Keywords:

InGaPN, RTA, HRXRD, MOVPE, Raman scattering

Abstract

Structural properties of lattice-matched InGaPN on GaAs (001) have comprehensively investigated by high resolution X-ray diffraction (HRXRD), Raman spectroscopy, and atomic force microscopy (AFM). The InGaPN layers were grown by metal organics vapor phase epitaxy (MOVPE). To obtain the lattice-matched InGaPN on GaAs, flow rates of trimethylindium (TMIn), trimethylgallium (TMGa) were kept, respectively, at 14.7 and 8.6 /umol/min. On the other hand, the N content optimized by varying the flow rate of dimethyhydrazine (DMHy, N precursor) was controlled at 300 /umol/min. With a combination of HRXRD and Raman scattering measurements, the In and N contents are estimated to be 55.8 and 0.9 at%, respectively. The lattice-mismatch lower than 0.47%, which corresponds to the lattice-matching condition, was confirmed for all the layers. The rapid thermal annealing (RTA) process was performed to improvement the crystalline quality of InGaPN layers. The annealing temperature was fixed at 650∘C, which is an optimum growth temperature of a GaAs buffer layer. The annealing time was varied in a range of 30 to 180 s to verify a composition uniformity. With increasing the annealing time up to 120 s, the In and N contents were slightly increased. The AFM-root mean square (RMS) roughness of the InGaPN surface was observed to be reduced. For higher annealing times, the N content was dramatically reduced, whereas the In content was still remained. Moreover, the RMS roughness was observed to be increased. RTA at 650∘C for 120 s demonstrated a significant improvement of structural properties of the lattice-matched InGaPN layers on GaAs (001).

References

<ol>
<li>D. Kaewket, S. Sanorpim, S. Tungasmita, R. Katayama, K. Onabe. MOVPE growth of high optical quality InGaPN layers on GaAs (001) substrates. Phys. Status Solidi C 7, 2079 (2010).
<a href="https://doi.org/10.1002/pssc.200983549">https://doi.org/10.1002/pssc.200983549</a>
</li>
<li>Y.G. Hong, R. Andr’e, C.W. Tu. Gas-source molecular beam epitaxy of GaInNP/GaAs and a study of its band lineup. J. Vac. Sci. Technol B 19, 1413 (2001).
<a href="https://doi.org/10.1116/1.1381069">https://doi.org/10.1116/1.1381069</a>
</li>
<li>K. Onabe, T. Kimura, N. Nakadan, J.Wu, Y. Ito, S. Yoshida, J. Kikawa, Y. Shiraki. ???????. In: The Thirteenth International Conference on Crystal Growth in Conj Unction with the Eleventh International Conference on Vapor Growth and Epitaxy (ICCG-13/ICVGE-11), Kyoto (2001).
</li>
<li>D. Kaewket, S. Tungasmita, S. Sanorpim, R. Katayama, K. Onabe. InGaPN/GaP lattice-matched single quantum wells on GaP (001) grown by MOVPE. Adv. Mater. Res. 55–57, 821 (2008).
<a href="https://doi.org/10.4028/www.scientific.net/AMR.55-57.821">https://doi.org/10.4028/www.scientific.net/AMR.55-57.821</a>
</li>
<li>C.W. Tu, W.M. Chen, I.A. Buyanova, J.S. Hwang. Material properties of dilute nitrides: Ga(In)NAs and Ga(In)NP. J. Cryst. Growth 288, 7 (2006).
<a href="https://doi.org/10.1016/j.jcrysgro.2005.12.013">https://doi.org/10.1016/j.jcrysgro.2005.12.013</a>
</li>
<li>H.P. Xin, R.J. Weltry, Y.G. Hong, C.W. Tu. Gas-source MBE growth of Ga(In)NP/GaP structures and their applications for red light-emitting diodes. J. Cryst. Growth 227–228, 558 (2001).
<a href="https://doi.org/10.1016/S0022-0248(01)00771-0">https://doi.org/10.1016/S0022-0248(01)00771-0</a>
</li>
<li>V.A. Odnoblyudov, C.W. Tu. Growth and fabrication of InGaNP-based yellow-red light emitting diodes. Appl. Phys. Lett 89, 191107 (2006).
<a href="https://doi.org/10.1063/1.2374846">https://doi.org/10.1063/1.2374846</a>
</li>
<li>P. Sritonwong, S. Sanorpim, K. Onabe. Composition investigations of nearly lattice-matched InGaPN films on GaAs (001) substrates grown by MOVPE. Chaing Mai J. Sci. 43 (2), 288 (2016).
</li>
<li>E. Bedel, R. Carles, A. Zwick, J.B. Renucci, M.A. Renucci. Selectivity of resonant Raman scattering in InAsxP1?x solid solutions. Phys. Rev. B 30, 5923 (1984).
<a href="https://doi.org/10.1103/PhysRevB.30.5923">https://doi.org/10.1103/PhysRevB.30.5923</a>
</li>
<li> S. Sanorpim, F. Nakajima, N. Nakandan, T. Kimura, R. Katayama, K. Onabe. MOVPE growth and optical investigations of InGaPN alloys. J. Cryst. Growth 275, e1017 (2005).
<a href="https://doi.org/10.1016/j.jcrysgro.2004.11.085">https://doi.org/10.1016/j.jcrysgro.2004.11.085</a>
</li>
<li> T.S. Wang, K.I. Lin, J.S. Hwang. Characteristics of InGaPN/GaAs heterostructures investigated by photoreflectance spectroscopy. J. Appl. Phys. 100, 093709 (2006).
<a href="https://doi.org/10.1063/1.2358327">https://doi.org/10.1063/1.2358327</a>
</li>
<li> H. Lee, D. Biswas, M.V. Klein, H. Morkoc, D.E. Aspnes. Study of strain and disorder of InxGa1?xP/(GaAs, graded GaP) (0.25 ? x ? 0.8) using spectroscopic ellipsometry and Raman spectroscopy. J. Appl. Phys. 75, 5040 (1994).
<a href="https://doi.org/10.1063/1.355746">https://doi.org/10.1063/1.355746</a>
</li>
<li> K.I. Lin, J.Y. Lee, T.S. Wang, S.H. Hsu, J.S. Hwang, V. Hong, C.W. Tu. Effects of weak ordering of InGaPN. Appl. Phys Lett. 86, 211914 (2005).
<a href="https://doi.org/10.1063/1.1940118">https://doi.org/10.1063/1.1940118</a>
</li>
<li> N.V. Besslov, T.T. Dedegkrev, A.N. Efimov, N.F. Kartenko, YuP. Yakovlev. ???????. Sov. Phys. Solid State (English Transl.), 22, 1652 (1980).
</li>
<li> D.D. Sell, H.C. Casey, K.W. Wecht. Concentration dependence of the refractive index for n- and p-type GaAs between 1.2 and 1.8 eV. J. Appl. Phys. 45, 2650 (1974).
<a href="https://doi.org/10.1063/1.1663645">https://doi.org/10.1063/1.1663645</a>
</li>
<li> G. Giesecke, H. Pfister. Pr?azisionsbestimmung der gitterkonstanten von AIIIBV-verbindungen. Acta Crystallogr. 11, 369 (1958).
<a href="https://doi.org/10.1107/S0365110X58000979">https://doi.org/10.1107/S0365110X58000979</a>
</li>
<li> M. Bugajski, W.J. Lewandowski. Concentration–dependent absorption and photoluminescence of n-type InP. J. Appl. Phys. 57, 521 (1985).
<a href="https://doi.org/10.1063/1.334786">https://doi.org/10.1063/1.334786</a>
</li>
<li> D. Kaewket, S. Sanorpim, S. Tungasmita, R. Katayama, K. Onabe. Band alignment of lattice-matched InGaPN/GaAs and GaAs/InGaPN quantum wells grown by MOVPE. Physica E 42, 1176 (2010).
<a href="https://doi.org/10.1016/j.physe.2009.11.125">https://doi.org/10.1016/j.physe.2009.11.125</a>
</li>
<li> M.E. Sherwin, T.J. Drummond. Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on B-SiC. J. Appl. Phys. 69, 8423 (1991).
<a href="https://doi.org/10.1063/1.347412">https://doi.org/10.1063/1.347412</a>
</li>
<li> P.E. Jahne, W. Giehler, L. Hildish. Non-isodisplacement of P atoms in long-wavelength optical phonons in In1?xGaxP. Phys. Status Solidi B 91, 155 (1979).
<a href="https://doi.org/10.1002/pssb.2220910116">https://doi.org/10.1002/pssb.2220910116</a>
</li>
<li> K.M. Kim, S. Nonoguchi, D. Krishnamurthy, S. Emura, S. Hasegawa, H. Asahi. Optical properties of InGaPN epilayer with low nitrogen content grown by molecular beam epitaxy. J. Appl. Phys. 12, 063507 (2012).
<a href="https://doi.org/10.1063/1.4752270">https://doi.org/10.1063/1.4752270</a>
</li>
<li> S.F. Yoon, K.W. Mah, H.Q. Zheng, B.P. Gay, P.H. Zhang. Observation of weak ordering effects and surface morphology study of InGaP grown by solid source molecular beam epitaxy. Microelectronics J. 31, 15 (2000).
<a href="https://doi.org/10.1016/S0026-2692(99)00085-3">https://doi.org/10.1016/S0026-2692(99)00085-3</a>
</li></ol>

Downloads

Published

2018-04-20

How to Cite

Sritonwong, P., Sanorpim, S., & Onabe, K. (2018). Structural Properties of Lattice-Matched InGaPN on GaAs (001). Ukrainian Journal of Physics, 63(3), 276. https://doi.org/10.15407/ujpe63.3.276

Issue

Section

Structure of materials