Properties of Periodic Structures Formed by Ordering Silver Nanoparticles in a Polymer Matrix Using the Holo-graphic Lithography Method

  • V. O. Hryn Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • P. V. Yezhov Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • O. S. Kutsenko L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • T. M. Smirnova Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: металополiмернi нанокомпозити, кластери срiбла, наночастинки срiбла, голографiчна лiтографiя

Abstract

The properties of one- and two-dimensional periodic structures formed by silver nanoparticles in polymer matrices have been studied. The thermo- or photostimulated synthesis of silver nanoparticles using the holographic lithography method occurs from a metal precursor previously distributed in the polymer matrix. The scheme of multibeam holographic recording is improved with the help of a liquid-crystal spatial light modulator. The mechanisms of periodic structure formation in the interference field, as well as the synthesis of silver nanoparticles, are considered. The relation between the parameters of nanoparticles and their spatial distribution, on the one hand, and the spectral properties of structures obtained in the polymer matrix, on the other hand, is studied.

References

U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995) [ISBN: 978-3-642-08191-0].

https://doi.org/10.1007/978-3-662-09109-8

L. Nicolais, G. Carotenuto. Metal–Polymer Nanocomposites (Wiley, 2004) [ISBN: 978-0-471-47131-8].

https://doi.org/10.1002/0471695432

F. Gonela, P. Mazzoldi, H.S. Nalwa. Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000) [ISBN: 978-0-12-513760-7].

V.M. Shalaev. Optical Properties of Nanostructured Random Media (Springer, 2002) [ISBN: 978-3-540-42031-6].

https://doi.org/10.1007/3-540-44948-5

I.M. Dmytruk. Electron Processes in Nanostructures (Kyiv, 2013) (in Ukrainian).

R.A. Vaia, C.L. Dennis, L.V. Natarajan, V.P. Tondiglia, D.W. Tomlin, T.J. Bunning. One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: a generic technique. Adv. Mater. 13, 1570 (2001).

https://doi.org/10.1002/1521-4095(200110)13:20<1570::AID-ADMA1570>3.0.CO;2-X

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, T.N. Smirnova. Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms. Nanotechnology 18, 105704 (2007).

https://doi.org/10.1088/0957-4484/18/10/105704

C. Hanisch, A. Kulkarni, V. Zaporojtchenko, F. Faupel. Polymer–metal nanocomposites with 2-dimensional Au nanoparticle arrays for sensoric applications. J. Phys.: Conf. Ser. 100, 052043 (2008).

https://doi.org/10.1088/1742-6596/100/5/052043

A. Sugunan, C. Thanachayanont, J. Dutta, J.G. Hilborn. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Tech. Adv. Mater. 6, 335 (2005).

https://doi.org/10.1016/j.stam.2005.03.007

G. Sergeev, V. Zagorsky, M. Petrukhina, S. Zav'yalov, E. Grigor'ev, L. Trakhtenberg. Preliminary study of the interaction of metal nanoparticle-containing poly-p-xylylene films with ammonia. Anal. Commun. 34, 113 (1997).

https://doi.org/10.1039/a700431a

S. Porel, N. Venkatram, D.N. Rao, T.P. Radhakrishnan. In situ synthesis of metal nanoparticles in polymer matrix and optical limiting application. J. Nanosci. Nanotechnol. 7, 1887 (2007).

https://doi.org/10.1166/jnn.2007.736

Y. Dirix, C. Bastiaansen, W. Caseri, P. Smith. Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).

https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<223::AID-ADMA223>3.0.CO;2-J

I.E. Protsenko, O.A. Zaimidoroga, V.N. Samoilov. Heterogeneous medium as a filter of electromagnetic radiation. J. Opt. A 9, 363 (2007).

https://doi.org/10.1088/1464-4258/9/4/009

H. Ditlbacher, J.R. Krenn, B. Lamprecht, A. Leitner, F.R. Aussenegg. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett. 25, 563 (2000).

https://doi.org/10.1364/OL.25.000563

B. Lamprecht, G. Schider, R.T. Lechner, H. Ditlbacher, J.R. Krenn, A. Leitner, F.R. Aussenegg. Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 84, 4721 (2000).

https://doi.org/10.1103/PhysRevLett.84.4721

A.N. Ponyavina, S.M. Kachan. Plasmonic spectroscopy of 2D densely packed and layered metallic nanostructures. In Polarimetric Detection, Characterization and Remote Sensing. NATO Science for Peace and Security Series C: Environmental Security (Springer, 2011), p. 383.

https://doi.org/10.1007/978-94-007-1636-0_15

P.N. Dyachenko, Yu.V. Miklyaev. One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric. Opt. Mem. Neural Networks 16, 198 (2007).

https://doi.org/10.3103/S1060992X07040029

H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762 (2002).

https://doi.org/10.1063/1.1506018

V. Mikhailov, J. Elliott, G. Wurtz, P. Bayvel, A.V. Zayats. Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 99, 083901 (2007).

https://doi.org/10.1103/PhysRevLett.99.083901

J. Stehr, J. Grewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J.M. Lupton, T.A. Klar, J. Feldmann, A.W. Holleitner, M. Forster, U. Scherf. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 15, 1726 (2003).

https://doi.org/10.1002/adma.200305221

T.N. Smirnova, L.M. Kokhtych, A.S. Kutsenko, O.V. Sakhno, J. Stumpe. Fabrication of periodic polymer/silver nanoparticles structures: In situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Nanotechnology 20, 405301 (2009).

https://doi.org/10.1088/0957-4484/20/40/405301

R.J. Collier, C.B. Burckhardt, L.H. Lin. Optical Holography (Academic Press, 1971).

H. Kogelnik. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909 (1969).

https://doi.org/10.1002/j.1538-7305.1969.tb01198.x

M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53 (2000).

https://doi.org/10.1038/35003523

L. Wu, Y. Zhong, C.T. Chan, K.S. Wong, G.P. Wang. Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography. Appl. Phys. Lett. 86, 241102 (2005).

https://doi.org/10.1063/1.1947369

S. Behera, J. Joseph. Design and realization of functional metamaterial basis structures through optical phase manipulation based interference lithography. J. Opt. 19, 104079 (2017).

https://doi.org/10.1088/2040-8986/aa840c

S. Indriˇsi¯unas, B. Voisiat, M. Gedvilas, G. Raˇciukaitis. New opportunities for custom-shape patterning using polarization control in confocal laser beam interference setup. J. Laser Appl. 29, 011501 (2017).

https://doi.org/10.2351/1.4976679

D. Lowell, J. Lutkenhaus, D. George, U. Philipose, B. Chen, Y. Lin. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry. Opt. Express 25, 14444 (2017).

https://doi.org/10.1364/OE.25.014444

M. Boguslawski, P. Rose, C. Denz. Increasing the structural variety of discrete nondiffracting wave fields. Phys. Rev. A 84, 013832 (2011).

https://doi.org/10.1103/PhysRevA.84.013832

V.O. Hryn, P.V. Yezhov, T.N. Smirnova. Two-dimensional periodic structures recorded in nanocomposites by holographic method: features of formation, applications. In Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, Vol. 195 (Springer, 2017), p. 293.

T.S. Kotsyuba, V.M. Granchak, I.I. Dilung. Influence of polarity of medium on formation of intermediates in photolysis of alkylaminobenzophenones in solutions. Theor. Exp. Chem. 33, 26 (1997).

https://doi.org/10.1007/BF02764739

A. Ledwith. Photoinitiation by aromatic carbonyl compounds. J. Oil Col. Chem. Assoc. 59, 157 (1975).

V.M. Granchak, T.S. Kotsuba, Z.F. Chemerskaya, I.I. Dilung. The role of oxygen in the origin of the synergistic effect of benzophenone and Michler's ketone in the initiation of radical photopolymerization. Theor. Exp. Chem. 31, 91 (1995).

https://doi.org/10.1007/BF00529993

A.V. Yeltsov. Photochemical Processes in Layers (Leningrad, 1978) (in Russian).

T.N. Smirnova, P.V. Yezhov, S.A. Tikhomirov, O.V. Buganov, A.N. Ponyavina. Time-dependent absorption spectra of 1D, 2D plasmonic structures obtained by the ordering of Ag nanoparticles in polymer matrix. In Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, Vol. 183 (Springer, 2016), p. 131.

T.N. Smirnova, V.I. Rudenko, V.O. Hryn. Nonlinear optical properties of polymer nanocomposites with a random and periodic distribution of silver nanoparticles. In Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, Vol. 214 (Springer, 2018), p. 333.

Published
2018-10-31
How to Cite
Hryn, V., Yezhov, P., Kutsenko, O., & Smirnova, T. (2018). Properties of Periodic Structures Formed by Ordering Silver Nanoparticles in a Polymer Matrix Using the Holo-graphic Lithography Method. Ukrainian Journal of Physics, 63(10), 888. https://doi.org/10.15407/ujpe63.10.888
Section
Optics, atoms and molecules