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INTERSITE RESONANT COUPLING.
SHORT SUMMARY OF KEY PROPERTIES'!

1. Introduction

The most featured items characterizing the semidiscrete nonlinear Schrodinger system with
background-controlled intersite resonant coupling are summarized. The system is shown to
be integrable in the Lax sense that makes it possible to obtain its soliton solutions in the
framework of a properly parametrized dressing procedure based on the Darboux transformation
accompanied by the implicit form of Bécklund transformation. In addition, the system inte-
grability inspires an infinite hierarchy of local conservation laws, some of which were found
explicitly in the framework of the generalized recursive approach. The system consists of two
basic dynamic subsystems and one concomitant subsystem, and its dynamics is embedded into
the Hamiltonian formulation accompanied by the highly nonstandard Poisson structure. The
nonzero background level of concomitant fields mediates the appearance of an additional type
of the intersite resonant coupling. As a consequence, it establishes the triangular-lattice-ribbon
spatial arrangement of location sites for the basic field excitations. At tuning the main back-
ground parameter, we are able to switch system’s dynamics between two essentially different
regimes separated by the critical point. The physical implications of system’s criticality become
evident after a rather sophisticated procedure of canonization of basic field variables. There
are two variants to standardize the system equal in their rights. Each variant is realizable in
the form of two nonequivalent canonical subsystems. The broken symmetry between canoni-
cal subsystems gives rise to the crossover effect in the nature of excited states. Thus, in the
under-critical region, the system supports the bright excitations in both subsystems; while, in
the over-critical region, one of the subsystems converts into the subsystem of dark excitations.

Keywords: nonlinear lattice, integrable system, soliton, conservation laws, symmetry break-
ing, canonical field variables.

lines [19], to the modeling of soliton-mediated energy
and charge transport in macromolecules [6, 9, 10, 23],

The semidiscrete integrable nonlinear Schrodinger
systems on one-dimensional or quasi-one-dimensional
lattices [1-5,13,26,29, 30,43] play a significant role in
modeling a wide variety of phenomena from various
branches of physics, inasmuch as they might give us
a clue what type of nonlinear excitations could be ex-
pected, when considering real physical situations. It
is sufficient to mention that the concept of nonlinear
excitations related to one or another model of nonlin-
ear Schrodinger type is applicable to the investigation
of nonlinear effects in discrete electric transmission
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as well as to the theoretical treatment of experimen-
tally observed light patterns in the cross-sections of
coupled optical fibers [7,12].

In this respect, the semidiscrete integrable nonlin-
ear Schrodinger system with background-controlled
intersite resonant coupling [32, 35, 36] is able to
find considerable physical applications as a multi-
component system with two types of free coupling
parameters giving rise to rather unusual properties

1 This paper was presented at the 3rd Walter Thirring Inter-
national School on Fundamentals of Astroparticle and Quan-
tum Physics (17-23 September, 2017, BITP, Kyiv, Ukraine).
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[37, 38] and as a system, whose underlying lattice
structure is closely related to that of (1,1) boron
nanotube [18] belonging to the new class of low-
dimensional synthetic materials known as nanorib-
bons [14,16,20]. The most representative results con-
cerning this system have recently been published in
our review articles [41, 42]. Hence, the present short
communication should be considered as the concise
guidance to the above reviews [41, 42|, where the in-
terested reader can find all mathematical details and
nontrivial extrications associated with the system un-
der study, as well as the numerous dynamical impli-
cations caused by the system criticality against the
main background parameter.

2. Dynamic Equations of the System

Having been written in terms of two pairs of ba-
sic field amplitudes g4 (n), r4(n) and g_(n), r—(n)
accompanied by one pair of concomitant field am-
plitudes w(n), v(n), the dynamics of the integrable
nonlinear Schrédinger system on a triangular-lattice
ribbon is governed by the following set of equations
[32,35-42]:

+i¢4 () + Bg-(n = D1 + g1 (n)ry(n)] +

+agqy(n+1)[gy(n)r—(n) —v(n)] +

+alg—(n) + g+ (n)u(n)] = 0, (2.1)
=it (n) +ar—(n— 11 +ry(n)gy(n)] +
+Br(n+ 1D[r+(n)g—(n) — p(n)] +

+B[r—(n) +ry(n)r(n)] =0, (2.2)
+ig—(n) + agqy(n+ D1 + ¢ (n)r—(n)] +

+ Bq-(n — Dlg—(n)ry(n) — p(n)] +

+Blg+(n) + g-(n)r(n)] = 0, (2.3)
—ir_(n )—|—BT+(n+1)[1+T (n)qg—(n)] +
+ar_(n—1)[r-(n)g(n) - (n)]+

+ari(n) +r_(n)u(n)] = (2.4)
+ip(n )+<MJ+(”+1)[T+(H) r—(n)p(n)] +
+Blg+(n)ri(n) — g-(n)r—(n)] —
—ar_(n—1)[g-(n) + ¢+ (n)u(n)] =0, (2.5)
—iv(n) + Bri(n+ 1)[g+(n) + ¢-(n)v(n)]+
+alri(n)gy(n) —r—(n)g-(n)] —

= Bq-(n—Dlr—(n) + ry(n)r(n)] =0, (2.6)
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where the amplitudes within each pair are related by
the symmetry of complex conjugation 7, (n) = ¢} (n),
r_(n) = ¢ (n), v(n) = p*(n), and the overdot de-
notes the differentiation with respect to the time vari-
able 7. The coupling parameters o and 5 can be taken
as arbitrary complex-valued functions of the time re-
stricted by the only property of complex conjugation
B* = a. The chosen symmetries of field amplitudes
and coupling parameters ensure the attractive type
of nonlinearities of the system. As for the boundary
conditions, we assume the basic field amplitudes to be
rapidly vanishing at both spatial infinities |n| — co.
We adopt the concomitant field amplitudes to be sup-
ported by an arbitrarily fixed spatially uniform back-
ground v = limy,| o ¥(n) and g = lim,|— o p(n). In
the general case (viz for nonzero values of the lim-
iting quantities p and v) the last two conditions
v = limj,| 00 v(n) and p = lim, o p(n) are suit-
able for treating the suggested semidiscrete nonlinear
system (2.1)—(2.6) as a system given on the ribbon
of a triangular lattice. In so doing, the quantities u
and v acquire the meaning of additional (background-
controlled) coupling parameters.

It can be shown [35,36,41,42] that the local densi-
ties

(2.7)
(2.8)
(n)],
(2.9)

entering the three lowest local conservation laws of
the system under study (2.1)—(2.6), are mutually de-
pendent due to the property

p—(n) = Infu(n) — q_(n)ro(n)),
p+(n)
po(n) = [l +p(n)v(n) + g4 (n)rs(n) +q-

~
\
(S
+
S
~—
X
—
S
=

= In[v(n

(n)r_

p—(n) = po(n) = ps (). (2.10)

On the one hand, the chain of equalities (2.10) forces
the limiting values p and v of concomitant fields u(n)
and v(n) to be time-independent. On the other hand,
it should be treated as the differential version of two
natural constraints

p(n) — g—(n)ry(n) _ K
L+ p(n)v(n) + g4 (n)re(n) + g-(n)r—(n) 1+’
(2.11)

v(n) — g4 (n)r—(n) v
L+ p(n)v(n) + ¢4 (n)re(n) + g-(n)r—(n) 1+’
(2.12)
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where the main background parameter pv can acquire
only the nonnegative values by virtue of its defini-
tion. The natural constraints (2.11) and (2.12) imply
that the concomitant fields p(n) and v(n) are actu-
ally dependent on the basic fields gy (n), r1(n) and
qg—(n), r—(n). Namely, this observation prescribes
us to call the fields p(n), v(n) as the concomitant
ones.

The spatial arrangement of lattice sites and inter-
site resonant bonds related to the system of our in-
terest (2.1)—(2.6) represents the two-leg ladder lattice
that, according to modern nanoribbon terminology
[11], can be referred to as the simplest triangular-
lattice ribbon with linear edges. In order to justify
the triangular-lattice-ribbon configuration of the un-
derlying space lattice, it is sufficient to consider the
linear part of our nonlinear system (2.1)-(2.6) and
to observe that the quantities «, 8 and —av, —fu
should be understood, respectively, as the parame-
ters of intersite linear and composite intersite linear
couplings between the basic fields. These parame-
ters responsible for the coherent (nondissipative) in-
teraction between the basic fields are analogous to
the parameters of the intersite resonant coupling typ-
ical of the theory of molecular (small-radius) exci-
tons [§].

The quasi-one-dimensionality of a lattice relevant
to the suggested system (2.1)—(2.6) appears to be a
favorable property required in physical applications,
inasmuch as already the quasi-one-dimensionality (in
contrast to the pure one-dimensionality) of a real
macromolecular lattice structure (in general, any lat-
tice structure considered on a spatially microscopic
scale) is known to be an indispensable factor for the
structure thermodynamic stability [44]. On the other
hand, namely due to the ladder-like geometry of its
underlying lattice structure, system (2.1)—(2.6) (when
dealing with the electrically charged excitations) ac-
quires the property to experience the action of an ex-
ternal uniform magnetic field in terms of magnetic
fluxes threading the elementary (triangular) plack-
ets of a lattice ribbon and modeled by the phases of
complex-valued coupling parameters treated as the
Peierls phases [22, 30, 33].

Moreover, the coupling parameters are capable to
incorporate the impact of an external linear potential
on the dynamics of the primary system (2.1)—(2.6)
via the appropriate modification of their time depen-
dences [37].
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The semidiscrete nonlinear system under study
(2.1)—(2.6) permits the zero-curvature representation
L(n|z) = A(n + 1]2)L(n|2) — L(n|2)A(n|2) (2.13)
in terms of either 4 x 4 [32] or 2 x 2 [35, 36, 41, 42|
square auxiliary matrices L(n|z) and A(n|z) referred
to as the spectral and evolution matrices, respec-
tively. Such a representability is known to define sys-
tem’s integrability in the Lax sense [21, 24].

3. Summary of Main Results

In the referred review articles [41, 42], we consid-
ered the most important properties of the semidis-
crete integrable nonlinear Schrédinger system with
background-controlled intersite resonant coupling in
view of a significant role that the semidiscrete inte-
grable models of the nonlinear Schrédinger-type play
in the description of different phenomena from vari-
ous branches of physics. The core of reviewed results
[41,42] lies in eight original articles [32,34-40], though
the impact of works [17,27,28] dealing with the stan-
dardization of the famous Ablowitz—Ladik semidis-
crete nonlinear system seems to be indispensable.

As the matter of fact, author’s activity in the stan-
dardization of the Ablowitz—Ladik system [27,28] has
been inspired by the rather critical attitude of Profes-
sor A.S. Davydov toward the nonstandard field am-
plitudes as those lacking the direct physical sense
[33]. The similar problem of standardization concerns
also the semidiscrete integrable nonlinear Schrodinger
system with background-controlled intersite resonant
coupling, however, on a more sophisticated level [38—
42] as compared with the standardization problems
appearing in simple semidiscrete integrable nonlinear
systems [25,27,28, 31| characterized by the splittable
structure (symplectic) matrices.

On the one hand, the splittability of a structure
matrix assumes that each of the two diagonal blocks
of a structure matrix is a zero matrix, while each of
the two off-diagonal blocks of a structure matrix is a
diagonal matrix. On the other hand, the splittability
requires that the each element of the structure ma-
trix to be given by the field variables belonging to
one separate subsystem. There is no universal recipe
how to overcome both of the above conditions simul-
taneously.

As for the system characterized by the splittable
structure matrix, the problem of its canonization
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turns out to be more or less a trivial (though very
cumbersome, sometimes) task. Thus, the main prob-
lem in the canonization of a semidiscrete integrable
nonlinear Schrédinger system with background-cont-
rolled intersite resonant coupling was to find out
such a nonlinear transformation to new field variables
that the corresponding structure matrix will be split-
table. To proceed with this program, we were obliged
to make a number of logical steps.

First of all, we have obtained several lowest local
densities from the infinite hierarchy and established
the Poisson and Hamiltonian structures of the sys-
tem in terms of the primary field variables. Then,
relying upon the so-called natural constraints, we
have revealed system’s criticality against the back-
ground parameter. With regard for system’s critical-
ity, we have managed to introduce the set of inter-
mediate field variables and then the two variants of
primary-intermediate field variables. Each variant of
the primary-intermediate field variables is character-
ized by the splittable structure matrix. Hence, the
main obstacle for the canonization of the system have
been surmounted. The last step in the standardiza-
tion procedure has been made by the proper choices
of nonlinear point transformations from each of the
above-mentioned variants of primary-intermediate
field variables to each of two relevant variants of
canonical field variables.

In the course of the standardization, we have dis-
covered that each particular incarnation of the stan-
dardized system consists of the weak and strong sub-
systems. The symmetry between the weak subsystem
and the strong subsystem is essentially broken and
can be restored only at the zero value of main back-
ground parameter. In the under-critical region of the
main background parameter, both canonical subsys-
tems are the subsystems of bright nonlinear excita-
tions; while, in the over-critical region, the weak sub-
system converts into the subsystem of dark nonlinear
excitations. Here, the terms “bright nonlinear excita-
tions” and “dark nonlinear excitations” should be un-
derstood by analogy with the terms “bright solitons”
and “dark solitons” typical of the nonlinear optics
[15]. At the very critical point, the weak subsystem
turns out to be completely unexcitable. The crossover
in the types of nonlinear excitations has been con-
firmed by the standardized minus-asymmetric and
plus-asymmetric multicomponent one-soliton solu-
tions both analytically and graphically with the for-
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mulas for the primary (unstandardized) soliton solu-
tion being taken into account.

The primary soliton solution itself has been ob-
tained in the framework of the rather nontrivial Dar-
boux dressing approach developed specially for this
purpose. This approach is based on restoring the Dar-
boux matrix relying upon its spectral properties and
on involving the implicit form of the multicomponent
Bécklund transformation. The successive application
of the Darboux dressing procedure to the genera-
tion of multisoliton solutions was outlined. However,
the explicit realization of this program seems to be
cumbersome due to the multicomponent character of
system-governing equations.

One more important property of the semidis-
crete integrable nonlinear Schrédinger system with
background-controlled intersite resonant coupling is
linked with the a priori arbitrary time dependences
of the transverse coupling parameters capable to in-
corporate the effect of an external linear potential. As
a consequence, the primary integrable nonlinear sys-
tem with appropriately adjusted parametrical driv-
ing becomes isomorphic to the system modeling the
Bloch oscillations of charged nonlinear carriers in the
electrically biased ribbon of a triangular lattice. The
justification of this statement can be found in our re-
cent paper [37].

The work has been supported by the National
Academy of Sciences of Ukraine (Division of Physics
and Astronomy) within the Program of Fundamental
Research (project No. 0117U000240).
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HAIIIBANCKPETHA HEJIIHIMHA IIIPHOJAIHI EPOBA
CHUCTEMA 3 ®OHOBO-KOHTPOJIbOBAHNMMU
PE3OHAHCHUMU 3B’A3KAMU. CTUCJINN
MEPEJIIK KJIFOUOBUX BJIACTUBOCTEN

Pesmowme

Mu migcyMoByeMO HafXapaKTEpHII BJIACTUBOCTI HAIIBJIHC-
KpeTHO! HeuiniitHol IIIprogiHrepoBOl cucreMu 3 mapaMeTpamu
Mi2>KBY3JI0BOI'O PE30HAHCHOI'O 3B’fA3KY KepPOBaHUMU (POHOBHMU
3HAYEHHAMHU JonoMizKHuX roJiiB. [lokazano, mo cucrema € inte-
rpoBHOIO B cenci Jlakca i, fIK HAC/TIIOK, YMOXKJIUBIIIOE ITOOYIOBY
CBOIX COJIITOHHHUX PO3B’f3KIB B paMKaX HAaJIE2KHO IIapaMeTpH-
30BaHOI MPOIIEIYPU OfsAraHHs Ha OCHOBI meperBopenus JlapOy.
3 inmoro 6oKy, IHTEIPOBHICTH CHCTEMH MOPOIXKYE HECKIHYIECH-
Hy iepapxiio JIOKaJIbHUX 3aKOHIB 30€pEXKEHHs, JEKOTPI 3 AKX
3HAIEHO fABHO i3 3aCTOCYBAHHSIM y3araJbHEHOIO PEKYPCUBHO-
ro migxoxy. Cucrema CKJIaIa€ThCsl 3 JBOX OCHOBHHX JMHaMIi-
YHUX MiZCHCTEM Ta OfHIET CymyTHBOI (MOIMOMIXKHOI) mijcucTe-
MU i ronyckae I'aMisibroHOBE POPMYITIOBAHHS, CYIIPOBOJIXKYBa~
He J0BOJII HecTtanzapTHo IlyacconoBoro crpykTryporo. Heny-
b0BUIT (DOHOBUI PiBEHB CYIIyTHIX II0JIIB OIIOCEPEIKOBYE IOSIBY
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0/TATKOBOI'O THUILY Mi>KBY3JIOBOI'O DE30HAHCHOI'O 3B’sI3Ky, BHa-
CJIJIOK YOro HpPOCTOPOBE BIOPSAIKYBaHHSI BY3JIiB PO3MIIlleHHH
OCHOBHHX IIOJIbOBHUX 30y/[KEHb yOCOOJIIOE HaMmpocTinty apa-
OMHYACTY CTBbOXKKY TPHKYTHOI rparku. [limmamrroByroun ke-
piBHOrO (POHOBOrO ImApaMETPa, MH MAEMO 3MOI'Y IEPEKJIIOTATH
JUHAMIKY CHUCTEMHU MiXK JBOMa CYTTEBO BiJIMiHHUMH peKHMa-
MH, PO3JiJIEHUMHM KPUTHUYHOIO TO4KOM. KpuruuHicTs guHaMi-
KM CHUCTEMH BiJTHOCHO (POHOBOIO ImapaMerpa IPOSIBJISIETHCS K
OIIOCEPEIKOBAHO B paMKaX JIOMOMIXKHO] JIIHIHOI CIIEKTPAJIbHOL
3a/a4i, Tak i 6e31ocepeIHRO B OBEIIHII CAMUX HEJIHINHUX -
HaMi9HUX piBHSAHb. PiZUYHMUI HiITEKCT KPUTUIHOCTHU JUHAMI-
KM CHUCTEMHU CTa€ SICHUM IICJIsi JOCUTH BUTOHYEHOI IIPOIIETLy-
p¥ KaHOHi3alil OCHOBHHMX ITOJIbOBUX 3MiHHEMX. Hapa3i icuye nBa
piBHOIIpaBHI BapiaHTH CTaHAAPTHU3AIll MOJBOBUX 3MIHHUX JO-
CJI Ky BaHOI HeJTiHIWHOT quHaMidHOl cucremu. Kozken 3 Bapian-
TiB € peasi3oBHUM y (pOpMi JBOX HEEKBIBAJIEHTHUX KAHOHIYHUX
migcucreM. IlopyrmieHa cuMeTpiss MiXK KaHOHIYHUMU IIiJCHCTe-
MaMH € 3aI0PYKOIO eeKTy 3MiHU Npupou 30yKEHUX CTaHIB
npu mepexoni depe3 KpUTHIHYy TO4kKy. OTKe, B JOKPUTHIHIHN
obsacTi cucrema obyMOBIIOE CBiT/II 30ymKeHHSI B 000X Iifmcu-
cTeMax, TOJi fK B HaJAKPUTHUYHIN obJsiacTi ojHa i3 mmijcucreM
[IePETBOPIOETHCA HA, MiJICUCTEMY 3 TEMHUMU 30Y/>KEHHSIMU.
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