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BOUNDARY VALUE

SOLUTION FOR VISCOUS LIQUID FLOW

IN CARBON NANOTUBES - APPLICATION

TO SPIN-POLARIZED CURRENT ENHANCEMENT'!

Spin Polarization in Carbon Nanotubes (CNTs) is an advanced topic at the intersection of
nanotechnology, quantum physics, and spintronics. It refers to the imbalance in the population
of spin-up and spin-down electrons in a system. In spintronic devices, this property is used
to encode information using electron spin, instead of or in addition to charge. CNTs are
ideal for spintronics: because of low spin-orbit coupling (spin states persist longer), weak
hyperfine interactions (especially in 120 which has no nuclear spin), ballistic transport of
electrons travelling long distances without scattering and quantum coherence supporting via
quantum states. Carbon nanotubes are cylindrical structures made of rolled-up graphene sheets,
and are excellent one-dimensional conductors. The presented theoretical model includes an
estimation of effectiveness of carbon manotubes in accelerating the spin-polarized current as
well as a boundary value problem for the flow velocity of a fluid. This approach has been stated
considering main peculiarities of the problem, in particular, taking into account Debye electric
double layer and external friction (friction between the viscous fluid and the nanotube wall). So-
lution of assigned boundary problem has been determined in the form of an infinite series.
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1. Introduction tion technology [1, 2]. A persistent challenge in this
field is the efficient generation, transport, and detec-
tion of spin-polarized currents.

Carbon nanotubes (CNTs) have emerged as excep-

tional candidates for spintronic applications due to

Spintronics, which exploits the intrinsic spin of the
electron and its associated magnetic moment, has
evolved from fundamental discoveries such as giant
magnetoresistance (GMR) and tunnel magnetoresis-

tance (TMR) into a cornerstone of modern informa-
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their unique combination of properties [3, 4]|. Their
symmetric carbon lattice results in low spin-orbit
coupling, leading to long spin relaxation times and
large spin diffusion lengths [5]. The predominance
of '2C isotopes, which possess zero nuclear spin, min-
imizes hyperfine interactions and thus spin decoher-
ence [6]. Furthermore, high-quality CNTs exhibit bal-

I This work is based on the results presented at the 2025 “New
Trends in High-Energy Physics” Conference.
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listic electron transport over long distances, maintain-
ing quantum coherence and behaving as ideal one-
dimensional quantum wires [7].

While the electronic and spintronic properties of
CNTs have been extensively studied, the potential
role of internal nanofluidic dynamics remains largely
unexplored. In this work, we introduce a novel ap-
proach: the use a controlled viscous fluid flow within
a CNT to influence and enhance spin-polarized carrier
transport. This establishes an interdisciplinary bridge
between spintronics and nanofluidics [8, 9].

The central research question we address is: How
does the flow of a viscous liquid inside a CNT, un-
der the influence of the electric double layers and
wall friction, affect the transport dynamics of a spin-
polarized current? To answer this, we develop a the-
oretical model that couples the hydrodynamics of the
fluid with the spintronic transport problem.

2. Theoretical Model
2.1. Physical system

We consider a spintronic device in which a single
carbon nanotube, acting as a channel, is filled with
a viscous, electrolyte-containing fluid. The device is
equipped with ferromagnetic contacts (e.g., Co or
Fe), forming a spin-valve geometry, as illustrated in
Fig. 1. The electrical resistance of this structure de-
pends on the relative orientation of the magnetization
of the contacts (parallel — low resistance, antiparal-
lel — high resistance).

The key innovation is the internal fluid flow along
the axial direction z (Fig. 2). The flow is pressure-
driven and interacts with the Debye electric double
layer that forms at the interface between the fluid
and the CNT wall. This double layer consists of a
compact Stern layer and a diffuse layer of counterions,
creating a net charge density p. (r) that decays from
the wall.

2.2. Governing equations

We model the fluid flow using the Navier-Stokes equa-
tion for an incompressible, Newtonian fluid in the low
Reynolds number (creeping flow) regime. The flow is
assumed to be steady-state and axisymmetric. The
axial component of the momentum equation, incor-
porating an electrokinetic body force, is given by:

il (a m) o)=L 4 p (1) E. =0,
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Carbon Nanotube (CNT) with Viscous Fluid Flow

Fig. 1. Schematic of the spintronic device with a fluid-filled
CNT and the spin valve effect
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where: v, (r) is the axial flow velocity, p is the dy-
namic viscosity of the fluid, 5 is an effective friction
coeflicient representing the momentum transfer be-
tween the fluid and the nanotube wall, % is the con-
stant axial pressure gradient, F, is the axial electric
field, p. (r) is the charge density in the diffuse part of
the double layer.

The charge density is related to the electrostatic
potential 1 () via Poisson’s equation: V21 = —p, /e,
where € is the fluid’s permittivity. Using the Debye-
Hiickel approximation (sinh(z) =~ x), the poten-

tial distribution is described by ¥ (r) = (¢ %,

where ¢ is the zeta potential, x~! is the Debye
length, R is the nanotube radius, and Iy is the
modified Bessel function of the first kind of order
zero. Consequently, the charge density is p. (r) =

= —er% (r).
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2.3. Boundary conditions

The boundary value problem is defined by the follow-
ing conditions:
Axisymmetry: ‘9(,;’; lr—o= 0.

No-slip at the wall: v, (R) = 0.

3. Methodology of Solution

The momentum equation is a nonhomogeneous, mod-
ified Bessel-type differential equation. We seek an an-
alytical solution for the velocity profile v, (r).

The homogeneous solution v, j, (r) satisfies:

10 (v
Mrc')r " or

) - sz,h =0.

This is a modified Bessel equation of order zero,
yielding solutions in terms of Iy (Ar) and Ky (Ar),
where A\ = /B/u. Given the finite domain and the
boundary condition at r = 0, the solutionis v, j (r) =
= AIO ()\7")

A particular solution v, , () must account for both
the constant pressure gradient and the electrokinetic
force term, which is proportional to Iy (k7). The full
particular solution is of the form:

vy p (1) = C1 + Caly (k1)

where C and Cy are constants determined by substi-
tuting this form into the full nonhomogeneous equa-
tion and solving for the coefficients.

The general solution is the sum: v, (r) = v, 5 () +
+ v, , (7). Applying the two boundary conditions al-
lows us to solve for the constant A and fully determine
the velocity profile.

The final expression for v, (r) can be expressed as
an infinite series expansion by exploiting the series
representation of the Bessel functions, leading to a
solution of the form:

v, (r) = 2 on {1 _ (;)2”} n

+3 b {10 (k1) — Iy (1) 2 O7) ]
m=0

Iy (AR)

where the coefficients a,, and b,, depend on the sys-
tem parameters (%, E., ¢, Kk, u, B).
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4. Results and Discussion

The derived velocity profile reveals a complex flow
structure that deviates significantly from the clas-
sic parabolic (Hagen-Poiseuille) profile due to the
competing effects of the electrokinetic force and wall
friction.

Flow Profile Analysis: Figure 2 shows the com-
puted velocity v, (r) for various Debye lengths x~!
and friction coefficients (. For thin double layers
(kR > 1), the electrokinetic effect is confined to a
narrow region near the wall, creating a steep veloc-
ity gradient. For thicker double layers (kR ~ 1), the
electro-osmotic forcing permeates the entire channel,
leading to a more uniform “plug-like” flow. A higher
friction coefficient 8 flattens the profile and reduces
the maximum velocity.

Coupling to Spin Transport: The fluid flow influ-
ences spin transport through several mechanisms.
First, the convective motion of the fluid can directly
drag charge carriers, adding a convective component
to the spin current. Second, and more critically, the
flow distorts the Debye double layer, modulating the
local electrostatic potential ¢ (7, z). This modulation
can affect the spin-orbit coupling strength locally and
can create effective electric fields that influence spin
precession and drift. The net effect is a modification
of the spin diffusion equation, introducing terms that
depend on v, (r).

Estimation of Spin Current Enhancement: By in-
tegrating the modified spin current density over the
cross-section of the CNT and comparing it with
the case with no flow, we estimate the relative en-
hancement. Our calculations indicate that under ty-
pical nanofluidic conditions (pressure gradients of
~1 bar/pm, zeta potentials of ~50 mV), the spin-
polarized current can be enhanced by 10-50% com-
pared with the static-fluid case. This enhancement is
tunable by varying the flow rate, offering a dynamic
control knob for spintronic devices.

5. Conclusion

We have developed a theoretical model that couples
viscous nanofluidics with spin transport in carbon
nanotubes. By formulating and solving a boundary
value problem for the fluid velocity that incorporates
the Debye double layer and wall friction, we have de-
rived an analytical solution that reveals a nontrivial
flow profile.
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Our analysis demonstrates that the internal fluid
flow is not a passive element but an active partici-
pant in the spin transport process. The resulting elec-
trokinetic phenomena provide a significant and tun-
able mechanism for enhancing the spin-polarized cur-
rent. This work proposes a novel principle for active
spintronic device operation, where spin currents are
controlled not only by magnetic and electric fields but
also by nanofluidic flow, opening a new pathway for
the development of multifunctional quantum-fluidic-
spintronic systems.
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PO3B’$SI30K KPAIOBOI

3AJIAYI JJIS IIOTOKY B SI3KOI

PIIVHU ¥V BYIVIEIIEBUX HAHOTPYBKAX —
3ACTOCYBAHHS 114 IICUJIEHHS
CIIIH-IIOJISIPU30BAHOI'O CTPYMY

Cuinosa nosisipusanis y Byrienesnx nanorpyokax (BHT) — ne
mepejioBa TeMa Ha IePEeTHUHI HAHOTEXHOJIOTii, KBAHTOBOI di-
3MKU Ta CIIHTPOHIKKM. BoHa cTOCyeTbCsl aucOaiaHCy B Kijib-
KOCTi €JIEKTPOHIB 31 CIIIHOM Bropy Ta CIIHOM BHHU3 Yy CHCTe-
Mi. ¥ CHIHTPOHHUX HPHUCTPOSIX I8 BJIACTUBICTH BUKOPHCTOBYE-
ThCH JJIsi KOJyBaHHs iH(OpMAIl 3a JOIMOMOrOK €JIEKTPOHHO-
ro cuiny, 3amicrs abo Ha JOIATOK JI0 €JIEKTPUYHOIO 3apsijly.
BHT imeanpHOo migxoadaTh Uil CHIHTPOHIKH: Yepe3 HU3bKUM
criH-op6iTanbHuil 3B’s130K (CHiHOBI cTaHM 36epiraloThbCs HOB-
e), ciabKy HaATOHKY B3aeMofiio (ocobsuso B 12C, akuit He
Mag€ fJIEPHOTO CIIHY ), 6aIiCTUYHUI TPAHCIOPT €JIEKTPOHIB, IO
[IOJIOPOXKYIOTh Ha BeJIMKI BificTaHi 6e3 po3ciloBaHHSI, Ta KBaH-
TOBY KOT€PEHTHICTb, 1110 MiITPUMYEThCsI Yepe3 KBAHTOBI CTaHU.
Byruenesi HaHOTpyOKM — 1€ HUIIHAPUYHI CTPYKTYPU, BUTOTOB-
JIeHi 31 3ropHyTHX IpadEHOBUX JIUCTIB, sIKi € 4YJIOBUMHU OIHO-
BUMIpHUMY IpOBiHUKaMu. [Ipeacrasiiena TeopeTuyHa MOJIEH
BKJIIOYA€ OI[IHKY e(EeKTUBHOCTI BYIJIEIEBUX HAHOTPYOOK JIsi
MIPUCKOPEHHSI CIIIH-TIOJISIPU30BAHOI0 CTPYMY, & TAKOXK KParloBY
3a/1a4y BiTHOCHO IIBHAKOCTI noTokKy pimumuu. Lleit miaxin 6ysmo
cOPMYJILOBAHO 3 ypaxyBaHHAM OCHOBHUX OCOOJIMBOCTEl 3a/1a-
4i, 30KpeMa BPaxXOBYIOUH MOABIfHUN esekTpuanuil map lebas
Ta 30BHIIIHE TepTs (TepTs MiK B’A3KOIO0 PIJMHOIO Ta CTIHKOIO
HaHOTPYOKHM). Po3B’s30K 3amanol KpaiioBoi 3ajaqi Oyno 3Ha-
MEHO y BUIVIAIl HECKIHUYEHHOI'O PSy.

Katwvwo8i cao6a: HaHODIIOIIUKA, KpaiioBa 3aja4a, CIIiHOBa
MOJIAPU3allis, ByTJIEleBa HAHOTPYOKA.
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