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Structures in elastic proton—proton scattering include the low-|t| non-exponential behavior, as
well as a diffractive minimum followed by a mazimum in the |t|-distribution. The underlying
physics of these structures and the possibility of a similar minimum—maximum pattern ap-
pearing in the |t|-distribution of single-diffractive scattering of protons are discussed. A simple
model that describes low-mass resonances in the M?-distribution of single-diffractive proton-

proton scattering is also presented.
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1. Introduction
In high-energy proton—proton (pp) interactions, vari-
ous processes may take place, including elastic scat-
tering and single-diffractive scattering. The latter is
also called single-diffractive dissociation. High-energy
elastic scattering and single-diffractive processes are
characterized by dominant pomeron (IP) exchange,
which acts as the mediator of the strong interaction
between the protons (see Fig. 1).

For elastic scattering reactions,

p(p1) + p(p2) — p(ph) + p(ph),

the independent kinematic variables are the squared
center of mass energy, s = (p; + p2)?, and the squared
four-momentum transfer, t = (p; — p})?, where p;
(i € {1,2}) are the initial-state four-momenta, and p)
are the final-state four-momenta of the protons.
Single diffractive dissociation of protons is a process

p(p1) + p(p2) — p(P}) + X (px),

where X denotes all the particles that may be pro-
duced together with an intact proton in the final
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state. In this case, the independent kinematic vari-
ables are: s = (p; + p2)?, t = (p1 — p})?, and
M? = (p1 + p2 — p})?, the squared mass of the pro-
duced hadronic system X.

In this paper, we focus on “soft” scattering proces-
ses. In the “soft” domain, the perturbative methods of
quantum chromodynamics (QCD), the fundamental
theory of strong interactions, are not applicable due
to the large value of the strong coupling. Comprehen-
sive theoretical investigations of the existing experi-
mental data can be carried out by relying on S-matrix
theory, optical analogies, and Regge theory [1].

Structures in elastic proton—proton scattering in-
clude the low-|t| non-exponential behavior and the
characteristic minimum-maximum structure of the ¢-
distribution. These structures were first observed at
the ISR accelerator at CERN in the 1970s [2, 3]
in the energy range of 23 GeV < /s < 63 GeV and
later confirmed at LHC by the TOTEM experi-
ment [4-9] in the energy range of 2.76 GeV < /s <
<13 TeV. At /s = 8 TeV, the TOTEM results ex-
clude a purely exponential shape, Ae Blfl in the
range of 0.027 GeV? < |t| < 0.2 GeV? with a signifi-
cance greater than 7o [5].

Regarding structures in dissociation processes,
nucleon and baryon resonances were seen at low

1 This work is based on the results presented at the 2025 “New
Trends in High-Energy Physics” Conference.
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masses in the M?2-distribution of inclusive dissoci-
ation processes [10-13] in pp and proton-deuteron
(pd) collisions. Similar resonance structures are ex-
pected at LHC energies [14] in single-diffractive dis-
sociation of protons. Another expected structure in
the single-diffractive dissociation of protons is a
minimum-maximum pattern in the |¢|-distribution,
see Ref. [15]. However, such a structure has not yet
been observed in the measured data, possibly due to
the limited |¢|-acceptance of the experiments.

This paper is organized as follows. In Sec. 2, after
introducing the basic formalism for elastic hadronic
scattering, the structures in the ¢t-distribution of elas-
tic pp (and proton-antiproton, pp) scattering are dis-
cussed. In Sec. 3, the formalism for inclusive hadronic
dissociation is introduced, and then structures in the
t- and M?2-distribution of single-diffractive dissocia-
tion of protons are investigated. A short summary is
given in Sec. 4.

2. Elastic Scattering of Protons
2.1. Elastic hadronic scattering formalism

There are two basic approaches for treating “soft”
elastic reactions [16]: the s-channel formalism and
the t-channel formalism.

In the s-channel formalism, elastic scattering is re-
lated to the particle formation in the direct channel:
the incident proton wave is partly absorbed due to
many open inelastic interaction channels at high ener-
gies; this leads to diffraction, and the diffracted waves
add up coherently giving rise to a sharp forward peak
in the ¢-distribution [17-19], called the diffraction
cone. The schematic representation of high-energy
particle diffraction is presented in Fig. 2.

The formulas that describe high-energy, “soft” scat-
tering of particles are analogous to those descri-
bing Fraunhofer diffraction of light by absorbing
obstacles [16]. The characteristics of the “obstacle” at
a given s and impact parameter b are specified by
the complex profile function, T'(s, b). The elastic scat-
tering amplitude, Aq(s,t), is related to the Fourier
transform of the profile function:

Aas.t) = 32 [ @bePr(s.) 1)

where ¢ = |q| = v/—t with q being the two-dimen-
sional transverse momentum transfer vector in the
reaction, and b = |b| with b being the two-dimensio-
nal impact parameter vector in the transverse plane.
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a b
Fig. 1. Elastic (a) and single-diffractive (b) scattering with
lowest order pomeron exchange

incident
wavefunction
—_—) shadow
Fig. 2. Schematic representation of high-energy particle

diffraction

The experimentally measurable differential cross-
section of elastic scattering is:

dael
—_— 2
g” (2)

In the t-channel approach to elastic scattering, the
scattering amplitude is given in terms of t-channel
(virtual) exchange contributions. In this paper, the
focus is on the t-channel approach.

In the framework of T. Regge’s theory of complex
angular momenta, the high-energy behavior of the rel-
ativistic scattering amplitude is determined by the
singularities of the partial wave amplitudes in the
complex angular momentum plane [16].

The t-channel scattering amplitude of signature
E==1is:

AS(sit) =20 25+ 1) £
c

where f&(j,t) is the partial wave amplitude of signa-

ture £ and complex angular momentum j, P; is the

Legendre polynomial of degree j, and

2s
t—4m,’

(s,t) = 312 |Aa (s, 1)

Pi(—2) .
sin(77) 4, (3)

Zt:].+

with m,, being the mass of the proton.

129



1. Szanyi

A

Fig. 3. Schematic diagram for elastic scattering with two-pion production contributions

If the singularity is a simple pole,

B(t)

f(,t) Pl - al)

(4)
we have a Regge trajectory, af(t) exchange or reggeon
exchange with signature £. A reggeon exchange can
be interpreted as an exchange of a virtual particle
with continuously varying spin (j = Rea®(t)) and
virtuality (Q% = —t).

At high energies, the dominant contribution comes
from the pomeron exchange. The contribution of a
simple-pole pomeron (£ = +1) is

_e—iman(t)/2 / g\er(®)
AR(s,t) = g2, () —— (2
cl(Sa ) g]Ppp( )SiH(Tf'Oz]p(t)/Z) <SO> ) (5)

where gpp,(t) is the Pomeron-proton coupling ?.
It is usual to absorb the
1
sin(rap(t)/2)

factor into the coupling and write that

S

) Otp(t)
Al (s, 1) = _eﬂmp(t)/zg]%pp(t) <80> , (6)

where typically so = 1 GeV?2.
This simple pole pomeron exchange picture with
an exponential Pomeron-proton coupling,

Ippp(t) = €™,

and a real-valued linear Regge trajectory,
ap(t) =1+ dp + apt,

with dp ~ 0.08 and o ~ 0.25 GeV~2, reproduces the
main features of the high-energy pp and pp elastic

2 Due to unitarity, for a simple pole, residues of the poles
factorize [20].
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scattering. These features are, see Ref. [21]: (i) the
rise of the total cross section,

47
oot (8) = - Im Aq (s, t =0), (7)

with increasing s, (ii) the forward peak in the elastic
differential cross section, and (iii) the energy evolu-
tion of its slope (shrinkage of the diffraction cone).
Note, however, a subdominant exchange with nega-
tive signature, £ = —1 (the odderon), higher-order
poles (multiple poles), cut singularities, and non-li-
near complex trajectories are also possible and im-
portant both theoretically and phenomenologically,
as they account for the finer details observed in the
experimental data [1,16,21-26].

The phenomenological importance of non-linear
complex Regge trajectories, the double-pole exchan-
ges, and the odderon exchange is discussed below.

2.2. Low-t non-exponential behavior

In the t-channel Regge exchange picture of elas-
tic scattering, the non-exponential low-|¢| differential
cross section is related to the two-pion production
threshold (4m?2) branch point of the ¢-channel scat-
tering amplitude and, hence, is explained as the man-
ifestation of t-channel unitarity, see Refs. [27-33]. In
Ref. [33], it was discussed that the non-exponential
behavior of the low-|t| doe/dt can come from both
the non-linear pomeron trajectory and the non-linear
pomeron-proton vertex coupling (a schematic repre-
sentation is presented in Fig. 3). In this case, both
the pomeron trajectory and the pomeron-proton ver-
tex coupling factor become complex and non-linear:

ap(t) = apg + apt — arp (\/4m3r —t— 2mﬂ>, (8)
bpt > (v/4m2 —t—2m
gppp(t) =€ s ( - ) (9)

A model implementing these ideas successfully de-
scribes the non-exponential behavior of the data from
ISR to LHC energies [33] as presented in Fig. 4.

ISSN 2071-0194. Ukr. J. Phys. 2026. Vol. 71, No. 2
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Fig. 4. Differential cross section for pp scattering at /s = 52.8 GeV and /s = 8 TeV compared to reference exponentials:
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Fig. 5. Schematic connection between (a) the t-dependence (differential cross section) and (b) the b-

dependence (profile function) of elastic pp scattering

In the s-channel picture of elastic scattering, the
strong non-exponential behavior at low-|¢| in the dif-
ferential cross section can be reproduced by a T'(s,b)
profile function that has a power law tail at high-
b values. Note that the dominant pomeron exchange
amplitude is dominantly imaginary, and hence, via
Eq. (1), I'(s,b) is predominantly real. A schematic
connection between the t-dependence and b-depen-
dence of elastic scattering is presented in Fig. 5. A
profile function with a Lévy a-stable shape in b and
ay, < 2 successfully describes the measured data, see
Refs. [34, 35].

The authors of Refs. [36, 37| argue that the low-|t|
non-exponential behavior of the elastic pp differential

ISSN 2071-0194. Ukr. J. Phys. 2026. Vol. 71, No. 2

cross section can be a consequence of an interplay
between the real parts of the Coulomb and nuclear
amplitudes. Further quantitative investigation of the
interplay between the two-pion production contribu-
tion and the Coulomb effects is a subject for future
studies.

2.3. Minimum-mazimum structure

The minimum-maximum structure in pp scattering is
related to s-channel unitarity, that is, absorption cor-
rections: a reduction at small-b in the I'(s, b) profile
function (see Fig. 5). This reduction physically corre-
sponds to absorption of the incoming particle flux into
channels other than those studied, see Ref. [38]. Ab-
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Fig. 7. Elastic pp differential cross section data described by a
dipole Regge exchange model with both pomeron and odderon
contributions
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Fig. 8. Contribution of the real and imaginary parts of the
pomeron and odderon components of the amplitude to the de-
scription of the pp differential cross section data at /s = 8 TeV
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sorption corrections (or s-channel unitarity correc-
tions) are accounted for by the contribution of multi-
ple or multipole Reggeon exchanges.

The dipole pomeron exchange model is a simple
model for describing the minimum-maximum struc-
ture in elastic pp scattering as a result of absorp-
tion corrections. This was developed in the 1970s by
Prof. L. Jenkovszky and his coauthors [39, 40].

In the dipole Regge exchange model, the high-
energy behavior of the elastic scattering amplitude is
determined by an isolated j-plane second-order pole
(dipole) of the partial wave amplitude [41],

sG)
i —a®)*’

where the residue §(j) is t-independent and non-
singular at j = a(t); a(t) is the Regge trajectory.

The first version of a dipole odderon amplitude
was introduced in the 1980s, see Ref. [42]. The model
that included dipole pomeron and odderon ampli-
tude components was used to analyze pp and pp elas-
tic scattering data below LHC energies in a number
of papers, see Refs. [42-44]. Later this dipole model
was used also to analyze LHC measurements, see
Refs. [45—48]. This rather simple model with dipole
pomeron and odderon components is sometimes re-
ferred to as the Jenkovszky model.

f(j7t) = (10)

Recently, this dipole Regge exchange model with
both pomeron and odderon contributions was applied
in Ref. [15] to describe pp and pp elastic scatter-
ing differential cross section data from SPS energies
(v/s ~ 500 GeV) up to LHC energies. The results are
presented in Fig. 6 and Fig. 7. Fig. 8 demonstrates
that the inclusion of the dipole odderon is important
for describing the data around the dip-bump and at
higher |¢| values.

3. Single Diffraction Dissociation
3.1. Formalism for proton dissociation

By combining the Regge exchange model for single
proton dissociation with Mueller’s generalized opti-
cal theorem, we obtain the following expression for
the high-energy double differential cross section of the
process, see Ref. [38]:

dQO'SD 1 * *
dtdM? = 167252 Z glpp(t)g]pp(t)nl(t)nj (t) X
ijk

ISSN 2071-0194. Ukr. J. Phys. 2026. Vol. 71, No. 2
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x (ﬁ)am (ﬁ)w) ]\:atﬁ%(M?,t)], (11)

where g;(t) is the coupling between reggeon i and the
proton; ‘
£+ efm'ozi(t)
= @)
3

is the signature factor of reggeon i and £ = +1 is
its signature; (ﬁ)m(t) is the propagator factor of
reggeon i obtained by assuming that s > M? >
>t > mg; of (M?,t) is the total cross section
for reggeon proton scattering with incoming reggeon
i, outgoing reggeon j via a mediator reggeon k at
an “energy”, M?, and with ingoing/outgoing reggeon
“mass-squared” (virtuality), ¢; the factor M?/sq just
before 0% (M?,t) is the inverse of the flux factor
which is inserted in order to write cross section in-
stead of ImA;,,j,(t, M?,1 = 0), the reggeon particle
scattering amplitude at £ = 0. For high masses, i.e.,
M? = oo:

oL (M 1) ImA;,,(t, Mt =0) =

1
o M2/80

1 ok (0)—1
= L On(t0) () (12)

where grpp(0) is the reggeon-proton coupling k at t=
0, and g;x (¢, 0) is the triple-reggeon coupling between
reggeons i, j, and k at t = 0; we set so = 1 GeV2.

3.2. Low-mass resonances

Let us assume that we have diffractive dissociation,
and the pp — pX process occurs via pomeron ex-
change alone. Then Eq. (11) takes the form

dQJSD - 1 %
dtdM? 167252
2 s \2er() M2 2
X |:g]Ppp(t) (W) ?OO'PPP (M 7t) ) (13)
where, for simplicity, we set
Gbpp(t) = ac”.
For the pomeron £ = 1 and the remainder of the

signature factor, 1/sin(map(t)/2), is absorbed into
g pp(t); this can be done since gpy,(t) is not fixed by
Regge theory itself and one has to model its ¢-depen-
dence. We use a simple linear pomeron trajectory:

a]p(t) =1+6p+ Oéipt,

ISSN 2071-0194. Ukr. J. Phys. 2026. Vol. 71, No. 2

where the typical values are, see Ref. [49]: dp = 0.08
and af = 0.25 GeV 2.

Now we want to make o, (M2, t) valid at low-M?
and not only in the asymptotic, M? — oo region. We
rewrite it as a sum of three different components:

e (M0 = o (4%, )+

+ o RO (M2 1) + o (M2, 1), (14)
where
, M2
At = (1- ) »
s M2 OllP(O)
% _ Casy () (15)
A(M?2t, m%) S0

is the Regge asymptotic component that describes the
high-M? domain and also serves as a background in
the low-M? region (\(z,y, 2) is the usual Killén func-
tion and the threshold mass for proton dissociation is
My, = my, +myo); o'on 5P (M2, t) describes the con-
tribution of the Roper resonance; and o'S% R (M2, t)
describes the contribution of the nucleon resonances.

The Roper-resonance term is parametrized by a
Breit-Wigner function:

2 bRopt
tot, Rop 2 _ Mth CRop€
oppp  C(M*t) = (1 — X

M=) (M2t m2)
MRO FRo
L , (16)
(M2 - ME,) — M, T,

where Mpop = 1.44 GeV and I'gep, = 0.325 GeV. An
exponential factor is included to introduce a t-
dependence for the Roper-resonance contribution
that provides a good description of the data.

The contribution of the nucleon resonances is con-
structed based on the pole decomposition of dual
amplitudes with Mandelstam analyticity (DAMA)

[14,50]:
o M2 CN
rihar0 - (- 2) s,
A(M2, t,m2)

Imay-(M?)
8 zJ: (J — Reay- (M2))2 + (Im oy (M2))2

(17)

where apn+ is the complex, non-linear nucleon trajec-
tory [51] with parameters given in Ref. [14]. DAMA
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not only allows for but also requires complex, nonlin-
ear Regge trajectories.

The described model has six free parameters a, b,
Casys DRops CRops €N- These are fitted® to pd (proton-

3 The model is fitted to the data by including the conversion
factor 0.3894 (in natural units 1 GeV~2 = 0.3894 mb).
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Parameter values for the resonance model

Parameter Value
a 60.3 + 2.6
b [GeV~2] 5.5 + 0.5
Casy 13.3 £ 0.6
bRop [GeV ™2 22.4 + 2.1
CRop [GeV?] 36.6 + 3.0
eN 2.6 +0.3
x> 242.2
NDF 123
x?/NDF 1.97

deuteron) inclusive scattering proton dissociation
(pd — X d) data transformed into pp (proton-proton)
inclusive scattering proton dissociation (pp — Xp)
data using the Fy(t) coherence factor, see Refs. [10,
11]. A study is performed using data at a center-of-
mass energy of /s = 22.8 GeV, which corresponds
to a proton laboratory momentum of py = 275 GeV
in the original fixed-target experiment. The values
of the fitted parameters and the fit statistics are
given in Table. The results are graphically presented
in Figs. 9 and 10. Fig. 11 shows the contributions
from the resonances and the asymptotic component
separately.
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Fig. 12. Elastic pp scattering and single-diffractive dissocia-
tion differential cross section data at /s = 31 GeV as a function
of —t

These results provide a solid basis for a more com-
plete analysis of all the existing inclusive proton disso-
ciation data in the future. Once this analysis is com-
pleted, it will allow for more precise predictions for
the proton dissociation cross section in pp scattering
at LHC energies in the low-M? domain.

3.3. Minimum-maxzimum structure

Measurements of pp single diffractive dissociation at
ISR do not show a dip-bump structure at |¢| values
where such a structure is observed in elastic pp scat-
tering. This is illustrated in Fig. 12 based on the sin-
gle diffractive dissociation data from Ref. [52]. This
observation can be explained in the framework of a
dipole Regge model in which the dip-bump structure
moves to higher |¢| values as the value of the slope
parameter decreases, see Ref. [15].

In Ref. [15] a dipole pomeron + odderon Regge ap-
proach was utilized to predict dip-bump structures in
pp single diffractive dissociation at LHC energies. The
starting point of the model is the triple-reggeon ap-
proach for single diffraction. The full double differen-
tial cross section has four components:

dtdM?2 "7 dtdM? dtdM?
+ dQO—gLBP d20—§D (18)
dtdM? — dtdM?’

where dzaggp/dth2 is the dipole pomeron-po-

meron-pomeron vertex contribution, d2c$9¥ /dtdM>
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Fig. 13. Prediction to a minimum-maximum structure in pro-
ton’s single diffraction at SPS energy /s = 546 GeV

-4.0<Logpé <-1.6, s =8TeV

_F — model  ® LHCATLAS
P

3 :

g oo1}::

E

5

g?’ 107

©

107
0 2 4 6 8 10

-t [GeV?]

Fig. 14. Prediction to a minimum-maximum structure in pro-
ton’s single diffraction at LHC energy /s = 8 TeV

is the dipole odderon-odderon-pomeron vertex con-
tribution, dQJg{gP JdtdM? is an effective reggeon-
reggeon-pomeron contribution, and d?c%p,/dtdM? is
a pion exchange contribution. The main results are
presented in Figs. 13 and 14, showing the differ-
ent cross section components separately. The main
conclusion are: (i) a dip-bump structure is predicted
around t = —4.5 GeV? at LHC and SPS energies in
the range of 3 GeV? < |t| < 7 GeV?; (ii) the position
of the dip and bump in —¢ in single diffractive disso-
ciation changes slowly with M and is determined by
the dipole OOP contribution.

4. Summary

Structures in elastic and single diffractive pp scatter-
ing are reviewed.

The low-|¢| non-exponential behavior of the pp elas-
tic differential cross section is a manifestation of t-
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channel unitarity: the data can be described from ISR
energies up to LHC energies by considering the contri-
bution of the branch point of the ¢-channel scattering
amplitude at the two-pion production threshold.

The minimum-maximum structure is connected
to s-channel unitarity: absorption corrections, ac-
counted for by multipole Reggeon exchanges, reduce
the profile function I'(s,b) at small-b and generate a
dip in the |t|-distribution.

A minimum-maximum structure is expected in
the |t|-distribution of single diffractive pp scatter-
ing around t = —4.5 GeV? at LHC and SPS ener-
gies in the range of 3 GeV? < |t| < 7 GeV? based on
a model containing a dipole pomeron and odderon
contributions.

A simple model is constructed and fitted to the
data on single diffractive scattering in the low-
M? resonance region. The dominant resonances at
Vs = 22.8 GeV, before the asymptotic M2-behavior
sets in, are the N(1440) Roper resonance, N(1680),
and N(2220).
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1. Cani

CTPYKTVYPA IIEPEPI3IB
[MPYXKHOT'O TA OAVUHAPHOI'O
JUOPAKIINTHOI'O PO3CIAHHS ITPOTOHIB

CrpykTypa IepepisiB Ipy>KHOIO IIPOTOH-IIPOTOHHOI'O PO3Cio-
BaHHS BKJIIOYA€ HEEKCIIOHEHIIfiHy IOBeJiHKy B obJjiacTi ma-
sux [t], a Takoxk audpaxniiEmit MiHIMyM, 3a SKUM CIIIye Ma-
KeuMyM y |t|-posnoaini. O6roBoproerbest ocHOBHa bizuka Ta-
KOl CTPYKTYPH Ta MOXKJIMBICTH MOSIBH NMOAIOHOI MiHIMAaJIbHO-
MaKCHMAJILHOI KApTUHU B |t|-pO3MOALIL 11 OJHOIPOTOHHOTO
nudpaxniiinoro posciroBans. Takok IpeacTaBjeHa IIPOCTa
MOJIEJTE, IO OTIICY€ PE3OHAHCH 3 MAJIOI0 Macoio B M 2-posmoii
ogHOIMMDPAKIITHOrO TPOTOH-IIPOTOHHOT'O PO3CIIOBAHHS.

Ka14w081i ca06a: IPpyKHE IPOTOH-IIPOTOHHE PO3CIIOBAHHS,
nudpakiliitie po3CciroBaHHs, OJMHApPHA AudpakIiiiHa gucolia-

[T}

11is1, pE30HAHCHU, IIOMEPOH, OJIepOH, “M’siKi” mporecu.
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