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STRUCTURES IN ELASTIC AND SINGLE-DIFFRACTIVE
SCATTERING OF PROTONS 1

Structures in elastic proton–proton scattering include the low-|𝑡| non-exponential behavior, as
well as a diffractive minimum followed by a maximum in the |𝑡|-distribution. The underlying
physics of these structures and the possibility of a similar minimum–maximum pattern ap-
pearing in the |𝑡|-distribution of single-diffractive scattering of protons are discussed. A simple
model that describes low-mass resonances in the 𝑀2-distribution of single-diffractive proton-
proton scattering is also presented.
K e yw o r d s: elastic proton-proton scattering, diffractive scattering, single-diffractive dissoci-
ation, resonances, pomeron, odderon, “soft” processes.

1. Introduction
In high-energy proton–proton (𝑝𝑝) interactions, vari-
ous processes may take place, including elastic scat-
tering and single-diffractive scattering. The latter is
also called single-diffractive dissociation. High-energy
elastic scattering and single-diffractive processes are
characterized by dominant pomeron (P) exchange,
which acts as the mediator of the strong interaction
between the protons (see Fig. 1).

For elastic scattering reactions,

𝑝(𝑝1) + 𝑝(𝑝2) → 𝑝(𝑝′1) + 𝑝(𝑝′2),

the independent kinematic variables are the squared
center of mass energy, 𝑠 = (𝑝1 + 𝑝2)

2, and the squared
four-momentum transfer, 𝑡 = (𝑝1 − 𝑝′1)

2, where 𝑝𝑖
(𝑖 ∈ {1, 2}) are the initial-state four-momenta, and 𝑝′𝑖
are the final-state four-momenta of the protons.

Single diffractive dissociation of protons is a process

𝑝(𝑝1) + 𝑝(𝑝2) → 𝑝(𝑝′1) +𝑋(𝑝𝑋),

where 𝑋 denotes all the particles that may be pro-
duced together with an intact proton in the final
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state. In this case, the independent kinematic vari-
ables are: 𝑠 = (𝑝1 + 𝑝2)

2, 𝑡 = (𝑝1 − 𝑝′1)
2, and

𝑀2 = (𝑝1 + 𝑝2 − 𝑝′1)
2, the squared mass of the pro-

duced hadronic system 𝑋.
In this paper, we focus on “soft” scattering proces-

ses. In the “soft” domain, the perturbative methods of
quantum chromodynamics (QCD), the fundamental
theory of strong interactions, are not applicable due
to the large value of the strong coupling. Comprehen-
sive theoretical investigations of the existing experi-
mental data can be carried out by relying on 𝑆-matrix
theory, optical analogies, and Regge theory [1].

Structures in elastic proton–proton scattering in-
clude the low-|𝑡| non-exponential behavior and the
characteristic minimum-maximum structure of the 𝑡-
distribution. These structures were first observed at
the ISR accelerator at CERN in the 1970s [2, 3]
in the energy range of 23 GeV .

√
𝑠 . 63 GeV and

later confirmed at LHC by the TOTEM experi-
ment [4–9] in the energy range of 2.76 GeV ≤

√
𝑠 ≤

≤ 13 TeV. At
√
𝑠 = 8 TeV, the TOTEM results ex-

clude a purely exponential shape, 𝐴𝑒−𝐵|𝑡|, in the
range of 0.027 GeV2 . |𝑡| . 0.2 GeV2 with a signifi-
cance greater than 7𝜎 [5].

Regarding structures in dissociation processes,
nucleon and baryon resonances were seen at low

1 This work is based on the results presented at the 2025 “New
Trends in High-Energy Physics” Conference.
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masses in the 𝑀2-distribution of inclusive dissoci-
ation processes [10–13] in 𝑝𝑝 and proton-deuteron
(𝑝𝑑) collisions. Similar resonance structures are ex-
pected at LHC energies [14] in single-diffractive dis-
sociation of protons. Another expected structure in
the single-diffractive dissociation of protons is a
minimum–maximum pattern in the |𝑡|-distribution,
see Ref. [15]. However, such a structure has not yet
been observed in the measured data, possibly due to
the limited |𝑡|-acceptance of the experiments.

This paper is organized as follows. In Sec. 2, after
introducing the basic formalism for elastic hadronic
scattering, the structures in the 𝑡-distribution of elas-
tic 𝑝𝑝 (and proton-antiproton, 𝑝𝑝) scattering are dis-
cussed. In Sec. 3, the formalism for inclusive hadronic
dissociation is introduced, and then structures in the
𝑡- and 𝑀2-distribution of single-diffractive dissocia-
tion of protons are investigated. A short summary is
given in Sec. 4.

2. Elastic Scattering of Protons

2.1. Elastic hadronic scattering formalism

There are two basic approaches for treating “soft”
elastic reactions [16]: the 𝑠-channel formalism and
the 𝑡-channel formalism.

In the 𝑠-channel formalism, elastic scattering is re-
lated to the particle formation in the direct channel:
the incident proton wave is partly absorbed due to
many open inelastic interaction channels at high ener-
gies; this leads to diffraction, and the diffracted waves
add up coherently giving rise to a sharp forward peak
in the 𝑡-distribution [17–19], called the diffraction
cone. The schematic representation of high-energy
particle diffraction is presented in Fig. 2.

The formulas that describe high-energy, “soft” scat-
tering of particles are analogous to those descri-
bing Fraunhofer diffraction of light by absorbing
obstacles [16]. The characteristics of the “obstacle” at
a given 𝑠 and impact parameter 𝑏 are specified by
the complex profile function, Γ(𝑠, 𝑏). The elastic scat-
tering amplitude, 𝐴el(𝑠, 𝑡), is related to the Fourier
transform of the profile function:

𝐴el(𝑠, 𝑡) =
𝑖𝑠

2𝜋

∫︁
𝑑2b𝑒𝑖q·bΓ(𝑠, 𝑏), (1)

where 𝑞 = |q| ≡
√
−𝑡 with q being the two-dimen-

sional transverse momentum transfer vector in the
reaction, and 𝑏 = |b| with b being the two-dimensio-
nal impact parameter vector in the transverse plane.

a b
Fig. 1. Elastic (a) and single-diffractive (b) scattering with
lowest order pomeron exchange

Fig. 2. Schematic representation of high-energy particle
diffraction

The experimentally measurable differential cross-
section of elastic scattering is:

d𝜎el

d𝑡
(𝑠, 𝑡) =

𝜋

𝑠2
|𝐴el (𝑠, 𝑡)|2 . (2)

In the 𝑡-channel approach to elastic scattering, the
scattering amplitude is given in terms of 𝑡-channel
(virtual) exchange contributions. In this paper, the
focus is on the 𝑡-channel approach.

In the framework of T. Regge’s theory of complex
angular momenta, the high-energy behavior of the rel-
ativistic scattering amplitude is determined by the
singularities of the partial wave amplitudes in the
complex angular momentum plane [16].

The 𝑡-channel scattering amplitude of signature
𝜉 = ±1 is:

𝐴𝜉
el(𝑠, 𝑡) = 2𝑖

∫︁
𝐶

(2𝑗 + 1) 𝑓𝜉(𝑗, 𝑡)
𝑃𝑗(−𝑧𝑡)

sin(𝜋𝑗)
𝑑𝑗, (3)

where 𝑓𝜉(𝑗, 𝑡) is the partial wave amplitude of signa-
ture 𝜉 and complex angular momentum 𝑗, 𝑃𝑗 is the
Legendre polynomial of degree 𝑗, and

𝑧𝑡 = 1 +
2𝑠

𝑡− 4𝑚𝑝
,

with 𝑚𝑝 being the mass of the proton.
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Fig. 3. Schematic diagram for elastic scattering with two-pion production contributions

If the singularity is a simple pole,

𝑓(𝑗, 𝑡) ∼
𝑗→𝛼(𝑡)

𝛽(𝑡)

𝑗 − 𝛼(𝑡)
, (4)

we have a Regge trajectory, 𝛼𝜉(𝑡) exchange or reggeon
exchange with signature 𝜉. A reggeon exchange can
be interpreted as an exchange of a virtual particle
with continuously varying spin (𝑗 = Re𝛼𝜉(𝑡)) and
virtuality (𝑄2 = −𝑡).

At high energies, the dominant contribution comes
from the pomeron exchange. The contribution of a
simple-pole pomeron (𝜉 = +1) is

𝐴Pel(𝑠, 𝑡) = 𝑔2P𝑝𝑝(𝑡)
−𝑒−𝑖𝜋𝛼P(𝑡)/2

sin(𝜋𝛼P(𝑡)/2)

(︂
𝑠

𝑠0

)︂𝛼P(𝑡)
, (5)

where 𝑔P𝑝𝑝(𝑡) is the Pomeron-proton coupling 2.
It is usual to absorb the

1

sin(𝜋𝛼P(𝑡)/2)

factor into the coupling and write that

𝐴Pel(𝑠, 𝑡) = −𝑒−𝑖𝜋𝛼P(𝑡)/2𝑔2P𝑝𝑝(𝑡)

(︂
𝑠

𝑠0

)︂𝛼P(𝑡)
, (6)

where typically 𝑠0 = 1 GeV2.
This simple pole pomeron exchange picture with

an exponential Pomeron-proton coupling,

𝑔2P𝑝𝑝(𝑡) = 𝑒𝑏P𝑡,

and a real-valued linear Regge trajectory,

𝛼P(𝑡) = 1 + 𝛿P + 𝛼′
P𝑡,

with 𝛿P ≃ 0.08 and 𝛼′
P ≃ 0.25 GeV−2, reproduces the

main features of the high-energy 𝑝𝑝 and 𝑝𝑝 elastic

2 Due to unitarity, for a simple pole, residues of the poles
factorize [20].

scattering. These features are, see Ref. [21]: (i) the
rise of the total cross section,

𝜎tot(𝑠) =
4𝜋

𝑠
Im𝐴el(𝑠, 𝑡 = 0), (7)

with increasing 𝑠, (ii) the forward peak in the elastic
differential cross section, and (iii) the energy evolu-
tion of its slope (shrinkage of the diffraction cone).
Note, however, a subdominant exchange with nega-
tive signature, 𝜉 = −1 (the odderon), higher-order
poles (multiple poles), cut singularities, and non-li-
near complex trajectories are also possible and im-
portant both theoretically and phenomenologically,
as they account for the finer details observed in the
experimental data [1, 16, 21–26].

The phenomenological importance of non-linear
complex Regge trajectories, the double-pole exchan-
ges, and the odderon exchange is discussed below.

2.2. Low-𝑡 non-exponential behavior

In the 𝑡-channel Regge exchange picture of elas-
tic scattering, the non-exponential low-|𝑡| differential
cross section is related to the two-pion production
threshold (4𝑚2

𝜋) branch point of the 𝑡-channel scat-
tering amplitude and, hence, is explained as the man-
ifestation of 𝑡-channel unitarity, see Refs. [27–33]. In
Ref. [33], it was discussed that the non-exponential
behavior of the low-|𝑡| 𝑑𝜎el/𝑑𝑡 can come from both
the non-linear pomeron trajectory and the non-linear
pomeron-proton vertex coupling (a schematic repre-
sentation is presented in Fig. 3). In this case, both
the pomeron trajectory and the pomeron-proton ver-
tex coupling factor become complex and non-linear:

𝛼P(𝑡) = 𝛼P0 + 𝛼′
P𝑡− 𝛼1𝑃

(︁√︀
4𝑚2

𝜋 − 𝑡− 2𝑚𝜋

)︁
, (8)

𝑔P𝑝𝑝(𝑡) = 𝑒
𝑏P𝑡+𝛽P

(︁√
4𝑚2

𝜋−𝑡−2𝑚𝜋

)︁
. (9)

A model implementing these ideas successfully de-
scribes the non-exponential behavior of the data from
ISR to LHC energies [33] as presented in Fig. 4.
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a b
Fig. 4. Differential cross section for 𝑝𝑝 scattering at

√
𝑠 = 52.8 GeV and

√
𝑠 = 8 TeV compared to reference exponentials:

𝑅(𝑡) = 1− 𝑑𝜎el/𝑑𝑡
ref(𝑡)

with ref(𝑡) = 𝐴𝑒𝐵𝑡 fitted to the data

a b
Fig. 5. Schematic connection between (a) the 𝑡-dependence (differential cross section) and (b) the 𝑏-
dependence (profile function) of elastic 𝑝𝑝 scattering

In the 𝑠-channel picture of elastic scattering, the
strong non-exponential behavior at low-|𝑡| in the dif-
ferential cross section can be reproduced by a Γ(𝑠, 𝑏)
profile function that has a power law tail at high-
𝑏 values. Note that the dominant pomeron exchange
amplitude is dominantly imaginary, and hence, via
Eq. (1), Γ(𝑠, 𝑏) is predominantly real. A schematic
connection between the 𝑡-dependence and 𝑏-depen-
dence of elastic scattering is presented in Fig. 5. A
profile function with a Lévy 𝛼-stable shape in 𝑏 and
𝛼𝐿 < 2 successfully describes the measured data, see
Refs. [34, 35].

The authors of Refs. [36, 37] argue that the low-|𝑡|
non-exponential behavior of the elastic 𝑝𝑝 differential

cross section can be a consequence of an interplay
between the real parts of the Coulomb and nuclear
amplitudes. Further quantitative investigation of the
interplay between the two-pion production contribu-
tion and the Coulomb effects is a subject for future
studies.

2.3. Minimum-maximum structure

The minimum-maximum structure in 𝑝𝑝 scattering is
related to 𝑠-channel unitarity, that is, absorption cor-
rections: a reduction at small-𝑏 in the Γ(𝑠, 𝑏) profile
function (see Fig. 5). This reduction physically corre-
sponds to absorption of the incoming particle flux into
channels other than those studied, see Ref. [38]. Ab-
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Fig. 6. Elastic 𝑝𝑝 differential cross section data described by a
dipole Regge exchange model with both pomeron and odderon
contributions

Fig. 7. Elastic 𝑝𝑝 differential cross section data described by a
dipole Regge exchange model with both pomeron and odderon
contributions

Fig. 8. Contribution of the real and imaginary parts of the
pomeron and odderon components of the amplitude to the de-
scription of the 𝑝𝑝 differential cross section data at

√
𝑠 = 8 TeV

sorption corrections (or 𝑠-channel unitarity correc-
tions) are accounted for by the contribution of multi-
ple or multipole Reggeon exchanges.

The dipole pomeron exchange model is a simple
model for describing the minimum-maximum struc-
ture in elastic 𝑝𝑝 scattering as a result of absorp-
tion corrections. This was developed in the 1970s by
Prof. L. Jenkovszky and his coauthors [39, 40].

In the dipole Regge exchange model, the high-
energy behavior of the elastic scattering amplitude is
determined by an isolated 𝑗-plane second-order pole
(dipole) of the partial wave amplitude [41],

𝑓(𝑗, 𝑡) =
𝛽(𝑗)

[𝑗 − 𝛼(𝑡)]
2 , (10)

where the residue 𝛽(𝑗) is 𝑡-independent and non-
singular at 𝑗 = 𝛼(𝑡); 𝛼(𝑡) is the Regge trajectory.

The first version of a dipole odderon amplitude
was introduced in the 1980s, see Ref. [42]. The model
that included dipole pomeron and odderon ampli-
tude components was used to analyze 𝑝𝑝 and 𝑝𝑝 elas-
tic scattering data below LHC energies in a number
of papers, see Refs. [42–44]. Later this dipole model
was used also to analyze LHC measurements, see
Refs. [45–48]. This rather simple model with dipole
pomeron and odderon components is sometimes re-
ferred to as the Jenkovszky model.

Recently, this dipole Regge exchange model with
both pomeron and odderon contributions was applied
in Ref. [15] to describe 𝑝𝑝 and 𝑝𝑝 elastic scatter-
ing differential cross section data from SPS energies
(
√
𝑠 ≃ 500 GeV) up to LHC energies. The results are

presented in Fig. 6 and Fig. 7. Fig. 8 demonstrates
that the inclusion of the dipole odderon is important
for describing the data around the dip-bump and at
higher |𝑡| values.

3. Single Diffraction Dissociation

3.1. Formalism for proton dissociation

By combining the Regge exchange model for single
proton dissociation with Mueller’s generalized opti-
cal theorem, we obtain the following expression for
the high-energy double differential cross section of the
process, see Ref. [38]:

𝑑2𝜎𝑆𝐷

𝑑𝑡𝑑𝑀2
=

1

16𝜋2𝑠2

∑︁
𝑖𝑗𝑘

[︃
𝑔𝑖𝑝𝑝(𝑡)𝑔

*
𝑗𝑝𝑝(𝑡)𝜂𝑖(𝑡)𝜂

*
𝑗 (𝑡)×
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×
(︁ 𝑠

𝑀2

)︁𝛼𝑖(𝑡) (︁ 𝑠

𝑀2

)︁𝛼𝑗(𝑡) 𝑀2

𝑠0
𝜎tot

𝑖𝑗𝑘(𝑀
2, 𝑡)

]︃
, (11)

where 𝑔𝑖(𝑡) is the coupling between reggeon 𝑖 and the
proton;

𝜂𝑖(𝑡) =
𝜉 + 𝑒−𝑖𝜋𝛼𝑖(𝑡)

sin(𝜋𝛼𝑖(𝑡))
,

is the signature factor of reggeon 𝑖 and 𝜉 = ±1 is
its signature;

(︀
𝑠

𝑀2

)︀𝛼𝑖(𝑡) is the propagator factor of
reggeon 𝑖 obtained by assuming that 𝑠 ≫ 𝑀2 ≫
≫ 𝑡 ≫ 𝑚2

𝑝; 𝜎tot
𝑖,𝑗,𝑘(𝑀

2, 𝑡) is the total cross section
for reggeon proton scattering with incoming reggeon
𝑖, outgoing reggeon 𝑗 via a mediator reggeon 𝑘 at
an “energy”, 𝑀2, and with ingoing/outgoing reggeon
“mass-squared” (virtuality), 𝑡; the factor 𝑀2/𝑠0 just
before 𝜎tot

𝑖𝑗𝑘(𝑀
2, 𝑡) is the inverse of the flux factor

which is inserted in order to write cross section in-
stead of Im𝐴𝑖𝑝→𝑗𝑝(𝑡,𝑀

2, 𝑡 = 0), the reggeon particle
scattering amplitude at 𝑡 = 0. For high masses, 𝑖.𝑒.,
𝑀2 → ∞:

𝜎tot
𝑖𝑗𝑘(𝑀

2, 𝑡) =
1

𝑀2/𝑠0
Im𝐴𝑖𝑝→𝑗𝑝(𝑡,𝑀

2, 𝑡 = 0) ≡

≡ 1

𝑠0
𝑔𝑘𝑝𝑝(0)𝑔𝑖𝑗𝑘(𝑡, 0)

(︂
𝑀2

𝑠0

)︂𝛼𝑘(0)−1

, (12)

where 𝑔𝑘𝑝𝑝(0) is the reggeon-proton coupling 𝑘 at 𝑡 =
0, and 𝑔𝑖𝑗𝑘(𝑡, 0) is the triple-reggeon coupling between
reggeons 𝑖, 𝑗, and 𝑘 at 𝑡 = 0; we set 𝑠0 = 1 GeV2.

3.2. Low-mass resonances

Let us assume that we have diffractive dissociation,
and the 𝑝𝑝 → 𝑝𝑋 process occurs via pomeron ex-
change alone. Then Eq. (11) takes the form

𝑑2𝜎𝑆𝐷

𝑑𝑡𝑑𝑀2
=

1

16𝜋2𝑠2
×

×
[︂
𝑔2P𝑝𝑝(𝑡)

(︁ 𝑠

𝑀2

)︁2𝛼P(𝑡) 𝑀2

𝑠0
𝜎tot
PPP(𝑀

2, 𝑡)

]︂
, (13)

where, for simplicity, we set

𝑔2P𝑝𝑝(𝑡) = 𝑎𝑒𝑏𝑡.

For the pomeron 𝜉 = 1 and the remainder of the
signature factor, 1/ sin(𝜋𝛼P(𝑡)/2), is absorbed into
𝑔2P𝑝𝑝(𝑡); this can be done since 𝑔P𝑝𝑝(𝑡) is not fixed by
Regge theory itself and one has to model its 𝑡-depen-
dence. We use a simple linear pomeron trajectory:

𝛼P(𝑡) = 1 + 𝛿P + 𝛼′
P𝑡,

where the typical values are, see Ref. [49]: 𝛿P = 0.08
and 𝛼′

P = 0.25 GeV−2.
Now we want to make 𝜎tot

PPP(𝑀
2, 𝑡) valid at low-𝑀2

and not only in the asymptotic, 𝑀2 → ∞ region. We
rewrite it as a sum of three different components:

𝜎tot
PPP(𝑀

2, 𝑡) = 𝜎tot, asy
𝑃𝑃𝑃 (𝑀2, 𝑡)+

+𝜎tot,Rop
PPP (𝑀2, 𝑡) + 𝜎tot,N

PPP (𝑀2, 𝑡), (14)

where

𝜎tot, asy
𝑃𝑃𝑃 (𝑀2, 𝑡) =

(︂
1− 𝑀2

th

𝑀2

)︂
×

× 𝑐asy√︁
𝜆(𝑀2, 𝑡,𝑚2

𝑝)

(︂
𝑀2

𝑠0

)︂𝛼P(0)
(15)

is the Regge asymptotic component that describes the
high-𝑀2 domain and also serves as a background in
the low-𝑀2 region (𝜆(𝑥, 𝑦, 𝑧) is the usual Källén func-
tion and the threshold mass for proton dissociation is
𝑀th = 𝑚𝑝 +𝑚𝜋0); 𝜎tot,Rop

𝑃𝑃𝑃 (𝑀2, 𝑡) describes the con-
tribution of the Roper resonance; and 𝜎tot,N

𝑃𝑃𝑃 (𝑀
2, 𝑡)

describes the contribution of the nucleon resonances.
The Roper-resonance term is parametrized by a

Breit–Wigner function:

𝜎tot,Rop
PPP (𝑀2, 𝑡) =

(︂
1− 𝑀2

th

𝑀2

)︂
𝑐Rop𝑒

𝑏Rop𝑡√︁
𝜆(𝑀2, 𝑡,𝑚2

𝑝)
×

× 𝑀RopΓRop(︁
𝑀2 −𝑀2

Rop

)︁2
−𝑀2

RopΓ
2
Rop

, (16)

where 𝑀Rop = 1.44 GeV and ΓRop = 0.325 GeV. An
exponential factor is included to introduce a 𝑡-
dependence for the Roper-resonance contribution
that provides a good description of the data.

The contribution of the nucleon resonances is con-
structed based on the pole decomposition of dual
amplitudes with Mandelstam analyticity (DAMA)
[14, 50]:

𝜎tot,N
𝑃𝑃𝑃 (𝑀

2, 𝑡) =

(︂
1− 𝑀2

th

𝑀2

)︂
𝑐N√︁

𝜆(𝑀2, 𝑡,𝑚2
𝑝)

×

×
∑︁
𝐽

Im𝛼𝑁*(𝑀2)

(𝐽 − Re𝛼𝑁*(𝑀2))2 + (Im𝛼𝑁*(𝑀2))2
, (17)

where 𝛼𝑁* is the complex, non-linear nucleon trajec-
tory [51] with parameters given in Ref. [14]. DAMA
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Fig. 9. 𝑀2-dependence at −𝑡 = 0.035 GeV2 and −𝑡 =

= 0.05 GeV2 from low-𝑀2 resonance region up to the asymp-
totic, higher-𝑀2 values

Fig. 10. 𝑀2-dependence at −𝑡 = 0.025 GeV2 and −𝑡 =

= 0.042 GeV2 in the low-𝑀2 resonance region

not only allows for but also requires complex, nonlin-
ear Regge trajectories.

The described model has six free parameters 𝑎, 𝑏,
𝑐asy, 𝑏Rop, 𝑐Rop, 𝑐N. These are fitted 3 to 𝑝𝑑 (proton-

3 The model is fitted to the data by including the conversion
factor 0.3894 (in natural units 1 GeV−2 = 0.3894 mb).

Fig. 11. 𝑀2-dependence at −𝑡 = 0.05 GeV2. The contribu-
tions from the resonances and the asymptotic component are
shown separately

Parameter values for the resonance model

Parameter Value

𝑎 60.3 ± 2.6
𝑏 [GeV−2] 5.5 ± 0.5
𝑐asy 13.3 ± 0.6
𝑏Rop [GeV−2] 22.4 ± 2.1
𝑐Rop [GeV2] 36.6 ± 3.0
𝑐N 2.6 ± 0.3

𝜒2 242.2
NDF 123
𝜒2/NDF 1.97

deuteron) inclusive scattering proton dissociation
(𝑝𝑑 → 𝑋𝑑) data transformed into 𝑝𝑝 (proton-proton)
inclusive scattering proton dissociation (𝑝𝑝 → 𝑋𝑝)
data using the 𝐹𝑑(𝑡) coherence factor, see Refs. [10,
11]. A study is performed using data at a center-of-
mass energy of

√
𝑠 = 22.8 GeV, which corresponds

to a proton laboratory momentum of 𝑝𝐿 = 275 GeV
in the original fixed-target experiment. The values
of the fitted parameters and the fit statistics are
given in Table. The results are graphically presented
in Figs. 9 and 10. Fig. 11 shows the contributions
from the resonances and the asymptotic component
separately.
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Fig. 12. Elastic 𝑝𝑝 scattering and single-diffractive dissocia-
tion differential cross section data at

√
𝑠 = 31 GeV as a function

of −𝑡

These results provide a solid basis for a more com-
plete analysis of all the existing inclusive proton disso-
ciation data in the future. Once this analysis is com-
pleted, it will allow for more precise predictions for
the proton dissociation cross section in 𝑝𝑝 scattering
at LHC energies in the low-𝑀2 domain.

3.3. Minimum-maximum structure

Measurements of 𝑝𝑝 single diffractive dissociation at
ISR do not show a dip-bump structure at |𝑡| values
where such a structure is observed in elastic 𝑝𝑝 scat-
tering. This is illustrated in Fig. 12 based on the sin-
gle diffractive dissociation data from Ref. [52]. This
observation can be explained in the framework of a
dipole Regge model in which the dip-bump structure
moves to higher |𝑡| values as the value of the slope
parameter decreases, see Ref. [15].

In Ref. [15] a dipole pomeron+ odderon Regge ap-
proach was utilized to predict dip-bump structures in
𝑝𝑝 single diffractive dissociation at LHC energies. The
starting point of the model is the triple-reggeon ap-
proach for single diffraction. The full double differen-
tial cross section has four components:

𝑑2𝜎𝑆𝐷

𝑑𝑡𝑑𝑀2
(𝑠, 𝑡,𝑀2) =

𝑑2𝜎PPP
𝑆𝐷

𝑑𝑡𝑑𝑀2
+

𝑑2𝜎OOP
𝑆𝐷

𝑑𝑡𝑑𝑀2
+

+
𝑑2𝜎RRP

𝑆𝐷

𝑑𝑡𝑑𝑀2
+

𝑑2𝜎𝜋
𝑆𝐷

𝑑𝑡𝑑𝑀2
, (18)

where 𝑑2𝜎PPP
𝑆𝐷 /𝑑𝑡𝑑𝑀2 is the dipole pomeron-po-

meron-pomeron vertex contribution, 𝑑2𝜎OOP
𝑆𝐷 /𝑑𝑡𝑑𝑀2

Fig. 13. Prediction to a minimum-maximum structure in pro-
ton’s single diffraction at SPS energy

√
𝑠 = 546 GeV

Fig. 14. Prediction to a minimum-maximum structure in pro-
ton’s single diffraction at LHC energy

√
𝑠 = 8 TeV

is the dipole odderon-odderon-pomeron vertex con-
tribution, 𝑑2𝜎RRP

𝑆𝐷 /𝑑𝑡𝑑𝑀2 is an effective reggeon-
reggeon-pomeron contribution, and 𝑑2𝜎𝜋

𝑆𝐷/𝑑𝑡𝑑𝑀2 is
a pion exchange contribution. The main results are
presented in Figs. 13 and 14, showing the differ-
ent cross section components separately. The main
conclusion are: (i) a dip-bump structure is predicted
around 𝑡 = −4.5 GeV2 at LHC and SPS energies in
the range of 3 GeV2 . |𝑡| . 7 GeV2; (ii) the position
of the dip and bump in −𝑡 in single diffractive disso-
ciation changes slowly with 𝑀 and is determined by
the dipole OOP contribution.

4. Summary

Structures in elastic and single diffractive 𝑝𝑝 scatter-
ing are reviewed.

The low-|𝑡| non-exponential behavior of the 𝑝𝑝 elas-
tic differential cross section is a manifestation of 𝑡-
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channel unitarity: the data can be described from ISR
energies up to LHC energies by considering the contri-
bution of the branch point of the 𝑡-channel scattering
amplitude at the two-pion production threshold.

The minimum–maximum structure is connected
to 𝑠-channel unitarity: absorption corrections, ac-
counted for by multipole Reggeon exchanges, reduce
the profile function Γ(𝑠, 𝑏) at small-𝑏 and generate a
dip in the |𝑡|-distribution.

A minimum–maximum structure is expected in
the |𝑡|-distribution of single diffractive 𝑝𝑝 scatter-
ing around 𝑡 = −4.5 GeV2 at LHC and SPS ener-
gies in the range of 3 GeV2 . |𝑡| . 7 GeV2 based on
a model containing a dipole pomeron and odderon
contributions.

A simple model is constructed and fitted to the
data on single diffractive scattering in the low-
𝑀2 resonance region. The dominant resonances at√
𝑠 = 22.8 GeV, before the asymptotic 𝑀2-behavior

sets in, are the N(1440) Roper resonance, N(1680),
and N(2220).
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I. Санi

СТРУКТУРА ПЕРЕРIЗIВ
ПРУЖНОГО ТА ОДИНАРНОГО
ДИФРАКЦIЙНОГО РОЗСIЯННЯ ПРОТОНIВ

Структура перерiзiв пружного протон-протонного розсiю-
вання включає неекспоненцiйну поведiнку в областi ма-
лих |𝑡|, а також дифракцiйний мiнiмум, за яким слiдує ма-
ксимум у |𝑡|-розподiлi. Обговорюється основна фiзика та-
кої структури та можливiсть появи подiбної мiнiмально-
максимальної картини в |𝑡|-розподiлi для однопротонного
дифракцiйного розсiювання. Також представлена проста
модель, що описує резонанси з малою масою в 𝑀2-розподiлi
однодифракцiйного протон-протонного розсiювання.

Ключ о в i с л о в а: пружне протон-протонне розсiювання,
дифракцiйне розсiювання, одинарна дифракцiйна дисоцiа-
цiя, резонанси, померон, одерон, “м’якi” процеси.
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