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АНАЛIЗ РОЗБIЖНОСТЕЙ В ЕФЕКТИВНIЙ
ВЗАЄМОДIЇ МIЖ БОЗОНАМИ ЧЕРНА–САЙМОНСА
ТА ФЕРМIОНАМИ СТАНДАРТНОЇ
МОДЕЛI В НЕУНIТАРНОМУ КАЛIБРУВАННI 1

УДК 539

Розглянуто векторне розширення Стандартної моделi (СМ) зi взаємодiєю типу Черна–
Саймонса. В данiй моделi вводиться нове масивне векторне поле, квантами якого є бо-
зони Черна–Саймонса (ЧС-бозони). Нове векторне поле не взаємодiє напряму з фермiон-
ним сектором СМ. Дослiджується питання структури i перенормовностi ефективних
петльових взаємодiй мiж ЧС-бозоном i СМ-фермiонами в довiльному калiбруваннi. По-
казано, що ультрафiолетовi розбiжностi, якi виникають при розрахунках петльових
взаємодiй, не можна усунути для взаємодiй з фермiонами однакового аромату, тодi як
вiдповiднi петльовi взаємодiї з фермiонами рiзних ароматiв позбавленi розбiжностей.
Визначено явний вигляд операторiв взаємодiї, що мiстять розбiжнi коефiцiєнти, та
запропоновано їх розгляд у пiдходi ефективної теорiї поля.
К люч о в i с л о в а: векторне розширення Стандартної Моделi, ефективна теорiя поля,
взаємодiя типу Черна–Саймонса.

1. Вступ
Хоча Стандартна модель (СМ) [1] є надзвичайно
успiшною, вона не може пояснити кiлька ключо-
вих фiзичних явищ. Серед них – наявнiсть темної
матерiї [2–4], явище нейтринних осциляцiй [5–8] та
спостережувана асиметрiя мiж матерiю та анти-
матерiєю у Всесвiтi [9, 10]. Цi недолiки свiдчать
про iснування додаткового (прихованого) сектора
фiзики елементарних частинок. Такий прихований
сектор може мiстити новi частинки, якi експери-
ментально не спостерiгаються по причинi того, що
вони або занадто масивнi, або взаємодiють з ча-
стинками СМ надзвичайно слабко.
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Прояви нових, легких та дуже слабковзаємодi-
ючих частинок можна шукати вже зараз в екс-
периментах з високою свiтнiстю [11–13]. Приро-
да таких частинок залишається невизначеною. Во-
ни можуть бути новими векторними [14, 15], ска-
лярними [16, 17] або псевдоскалярними бозонами
[18, 19], або новими фермiонами [20, 21]. У цiй
статтi ми зосереджуємося на розширеннi СМ, яке
мiстить новий масивний векторний бозон Черна–
Саймонса (ЧС), що безпосередньо взаємодiє лише
з бозоном Хiггса та векторними полями СМ.

Найпростiшу калiбрувально-iнварiантну реалi-
зацiю таких взаємодiй можна сформулювати в тер-
мiнах операторiв розмiрностi 6 [11, 22]

ℒ1 =
𝐶𝑌

Λ2
𝑌

𝑋𝜇(D𝜈𝐻)†𝐻 𝐵𝜆𝜌 𝜖
𝜇𝜈𝜆𝜌 + h.c., (1)

ℒ2 =
𝐶𝑆𝑈(2)

Λ2
𝑆𝑈(2)

𝑋𝜇(D𝜈𝐻)†𝐹𝜆𝜌𝐻 𝜖𝜇𝜈𝜆𝜌 + h.c., (2)

1 Ця робота базується на результатах, якi доповiдалися
на мiжнароднiй конференцiї “New Trends in High-Energy
Physics” (2025 р.).
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де 𝑋𝜇 позначає нове векторне поле з масою 𝑀𝑋 , а
𝜖𝜇𝜈𝜆𝜌 – це тензор Левi–Чiвiта (𝜖0123 = +1). Дублет
Хiггса позначається 𝐻, тодi як 𝐵𝜇𝜈 та 𝐹𝜇𝜈 позна-
чають тензори напруженостей полiв калiбруваль-
них груп 𝑈𝑌 (1) та 𝑆𝑈𝑊 (2) вiдповiдно. Констан-
ти 𝐶𝑌 та 𝐶𝑆𝑈(2) – це безрозмiрнi коефiцiєнти, а
Λ𝑌 та Λ𝑆𝑈(2) представляють енергетичнi масшта-
би, пов’язанi з новою фiзикою. Наведенi лагранжi-
ани є калiбрувально-iнварiантними, оскiльки 𝑋𝜇 є
полем Штюкельберга.

Пiсля спонтанного порушення електрослабкої
симетрiї взаємодiї у виразах (1)–(2) генерують (се-
ред iнших членiв) оператори трипольових взаємо-
дiй мiж фiзичним полем Хiггса, калiбрувальними
бозонами Стандартної моделi та бозоном ЧС:

ℒ(4)
CS = 𝑐𝑧 𝜖

𝜇𝜈𝜆𝜌𝑋𝜇𝑍𝜈𝜕𝜆𝑍𝜌 + 𝑐𝛾 𝜖
𝜇𝜈𝜆𝜌𝑋𝜇𝑍𝜈𝜕𝜆𝐴𝜌 +

+
{︀
𝑐𝑤 𝜖𝜇𝜈𝜆𝜌𝑋𝜇𝑊

−
𝜈 𝜕𝜆𝑊

+
𝜌 + h.c.

}︀
, (3)

ℒ(5)
CS = 𝑐𝛾ℎ 𝜖

𝜇𝜈𝜆𝜌𝑋𝜇
𝜕𝜈ℎ

𝑣
𝜕𝜆𝐴𝜌 +

+ 𝑐𝑧ℎ 𝜖
𝜇𝜈𝜆𝜌𝑋𝜇

𝜕𝜈ℎ

𝑣
𝜕𝜆𝑍𝜌, (4)

де лагранжiан (3) мiстить оператори розмiрностi
4, тодi як лагранжiан (4) мiстить внески опера-
торiв розмiрностi 5. Поле ℎ вiдповiдає фiзичному
збудженню дублета Хiггса з вакуумним середнiм
𝑣, а 𝐴𝜇, 𝑊±

𝜇 та 𝑍𝜇 позначають поля фотонiв та
електрослабких векторних бозонiв вiдповiдно. Па-
раметри 𝑐𝛾ℎ, 𝑐𝑧ℎ, 𝑐𝛾 та 𝑐𝑧 є дiйсними величинами,
тодi як 𝑐𝑤 в загальному випадку може бути ком-
плексним. Зауважимо, що поле Черна–Саймонса
𝑋𝜇 взаємодiє лише з векторним сектором Стандар-
тної моделi та напряму не взаємодiє з фермiонами.

Питання перенормованостi взаємодiй, що опи-
суються лагранжiаном (3), розглядалося в попе-
реднiх дослiдженнях [23–25]. Було встановлено,
що петлевi взаємодiї ЧС-бозона з кварками рi-
зних ароматiв не мiстять розбiжних доданкiв, то-
дi як петлевi взаємодiї з лептонами або кварками
одного аромату мiстять ультрафiолетовi розбiжно-
стi [26]. Розрахунки, виконанi в унiтарному калi-
бруваннi [27], показали, що такi розбiжностi немо-
жливо усунути.

В данiй роботi ми розширюємо аналiз перенор-
мованостi взаємодiй на випадок загального 𝑅𝜉-
калiбрування, що мiстить повний набiр дiаграм,
якi включають як бозони Хiггса, так i бозони

Голдстоуна. Мета цього дослiдження подвiйна: по-
перше, визначити, чи залишаються розбiжностi,
коли калiбрувальнi параметри 𝜉𝑖 скiнченнi, а по-
друге, встановити вiдповiднiсть мiж результатами,
отриманими в 𝑅𝜉- та унiтарному калiброваннях.

Дослiдження ефективної петльової взаємодiї
мiж ЧС-бозоном та фермiонами Стандартної мо-
делi є надзвичайно важливим в контекстi експе-
риментального пошуку ЧС-бозону [28]. Дотриму-
ючись пiдходу, описаного в роботi [27], в данiй ро-
ботi ми зосередимося переважно на взаємодiї бозо-
на ЧС з лептонами, уникаючи тим самим додатко-
вих складнощiв, пов’язаних зi змiшуванням квар-
кових ароматiв через матрицю Кабiббо–Кобаясi–
Масукави (ККМ).

2. Взаємодiї в 𝑅𝜉-калiбруваннi

У загальному 𝑅𝜉-калiбруваннi дублет поля Хiггса
має вигляд

𝐻 =

⎛⎝ 𝜑+

𝑣 + ℎ+ 𝑖𝜑𝑧√
2

⎞⎠. (5)

Поля 𝜑+ та 𝜑𝑧 вiдповiдають зарядженим та ней-
тральним бозонам Голдстоуна вiдповiдно, а ℎ по-
значає фiзичне поле Хiггса. В 𝑅𝜉-калiбруваннi
трипольовi взаємодiї ЧС бозона, визначенi лагран-
жiанами (3) та (4), отримують додатковi вне-
ски, якi явно включають взаємодiю з бозонами
Голдстоуна. Явний вигляд таких взаємодiй можна
отримати безпосередньо з лагранжiанiв (1) та (2):

ℒ𝑋𝜑∓𝑊±
=

2𝑖

𝑔𝑣

(︁
𝑐𝑤 𝑋𝜇 𝜕𝜈𝜑

− 𝜕𝜆𝑊
+
𝜌 −

− 𝑐*𝑤 𝑋𝜇 𝜕𝜈𝜑
+ 𝜕𝜆𝑊

−
𝜌

)︁
𝜖𝜇𝜈𝜆𝜌, (6)

ℒ𝑋𝜑𝑧𝑍 =
𝑐𝑧𝑔

2 cos 𝜃𝑊
𝑋𝜇

𝜕𝜈𝜑𝑧

𝑣
𝜕𝜆𝑍𝜌 𝜖

𝜇𝜈𝜆𝜌, (7)

ℒ𝑋𝜑𝑧𝐴 =
𝑐𝛾𝑔

2 cos 𝜃𝑊
𝑋𝜇

𝜕𝜈𝜑𝑧

𝑣
𝜕𝜆𝐴𝜌 𝜖

𝜇𝜈𝜆𝜌. (8)

Ми використаємо отриманi вирази для ана-
лiзу процесу розпаду масивного бозона Черна–
Саймонса на пару заряджених лептонiв, 𝑋 → ℓ+ℓ−

(ℓ = 𝑒, 𝜇, 𝜏) в 𝑅𝜉-калiбруваннi.

3. Трикутнi дiаграми

На рис. 1 наведенi приклади трикутних дiаграм,
що описують народження лептонiв при розпадi бо-
зона ЧС, що обумовленi його взаємодiєю з 𝑊± бо-
зонами та бозонами Голдстоуна. Окрiм наведених
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a b c

Рис. 1. Типовi трикутнi дi-
аграми, що роблять внесок
в утворення лептонних пар
при розпадi ЧС-бозона, що
обумовленi його взаємодiєю з
двома 𝑊 -бозонами або з 𝑊

та зарядженим 𝜑-бозоном

дiаграм, в 𝑅𝜉-калiбруваннi також потрiбно вра-
хувати аналогiчнi дiаграми, що включають фото-
ни, 𝑍 бозони, бозон Хiггса ℎ та поля Голдстоуна
𝜑±, 𝜑𝑧. Вiдповiднi вершини взаємодiй визначаю-
ться правилами дiаграмної технiки Фейнмана для
лагранжiанiв (3), (4) та (6)–(8).

Безпосереднiй розрахунок показує, що амплiту-
ди, якi вiдповiдають зазначеним трикутним дiа-
грамам, включають як логарифмiчнi, так i лiнiйнi
розбiжностi, що мiсять нескiнченний параметр

Λ1 =
𝜋2

2(2𝜋)4
ln

(︂
Λ2

𝑀2
𝑊

)︂
−→ ∞. (9)

Можна показати, що однопетлевi дiаграми з двома
внутрiшнiми лiнiями, якi описують розпад бозо-
на Черна–Саймонса на лептони та мiстять у петлi
векторнi поля СМ, бозони Голдстоуна або бозони
Хiггса, не дають внеску в амплiтуду реакцiї завдя-
ки властивостям тензора Левi–Чiвiти.

4. Сума розбiжних
внескiв у 𝑅𝜉-калiбруваннi

Суму розбiжних петльових внескiв вiд усiх дiа-
грам, що описують розпад бозона ЧС в лептони,
можна записати у виглядi

∑︁
diagrams

𝑀𝑓𝑖, div = Λ1 ℓ̄(𝑝
′)

[︂
(𝐴+𝐴5𝛾

5) 𝛾𝜈𝛾𝜆𝛾𝜌 +

+
𝐵 +𝐵5𝛾

5

𝑣
𝑞𝜈𝛾𝜆𝛾𝜌

]︂
ℓ(−𝑝) 𝜀𝜆𝑋

𝜇 𝜖𝜇𝜈𝜆𝜌, (10)

де 𝐴, 𝐴5, 𝐵 i 𝐵5 — це безрозмiрнi коефiцiєнти, що
визначаються як

𝐴+𝐴5𝛾
5 =

− 𝑖
𝑔2

4

[︁
Θ𝑊1 +

2𝑐𝑧
cos2 𝜃𝑊

(𝑡ℓ3(𝑡
ℓ
3 − 2𝑞ℓ sin

2 𝜃𝑊 )+

+2𝑞2ℓ sin
4 𝜃𝑊 ) + 2𝑞ℓ𝑐𝛾 tan 𝜃𝑊 (𝑡ℓ3 − 2𝑞ℓ sin

2 𝜃𝑊 )
]︁
−

− 𝑖𝛾5 𝑔
2

4

[︁
Θ𝑊1 +

2𝑡ℓ3𝑐𝑧
cos2 𝜃𝑊

(𝑡ℓ3 − 2𝑞ℓ sin
2 𝜃𝑊 )+

+2𝑞ℓ𝑡
ℓ
3𝑐𝛾 tan 𝜃𝑊

]︁
, (11)

𝐵 +𝐵5𝛾
5 = −𝑚ℓ

𝑣

[︂
Θ𝑊2 − 𝑐𝑧ℎ

𝑔(𝑡ℓ3 − 2𝑞ℓ sin
2 𝜃𝑊 )

2 cos 𝜃𝑊
−

− 𝑐𝛾ℎ𝑒𝑞ℓ

]︂
− 𝑖

𝑚ℓ

𝑣
𝛾5

[︁
Θ𝑊1 − 𝑐𝑧(𝑡

ℓ
3 − 2𝑞ℓ sin

2 𝜃𝑊 )−

− 𝑞𝑒𝑐𝛾 sin 2𝜃𝑊

]︁
. (12)

Розбiжностi петльових дiаграм зникають лише за
виконання умови 𝐴 = 𝐴5 = 𝐵 = 𝐵5 = 0. Ми не ви-
явили жодного спiввiдношення мiж сталими зв’яз-
ку 𝑐𝑧, 𝑐𝛾 , 𝑐𝛾ℎ, 𝑐𝑧ℎ, Θ𝑊1 та Θ𝑊2, для яких цi умо-
ви виконуються, i прийшли до висновку, що роз-
бiжностi зникають лише тодi, коли всi зазначенi
сталi зв’язку дорiвнюють нулю.

5. Порiвняння з розрахунками в
унiтарному калiбруваннi

Розрахунки, проведенi в унiтарному калiбруваннi
[27], пiдтверджують висновок про те, що ультрафi-
олетовi розбiжностi в ефективнiй петлевiй взаємо-
дiї мiж бозоном ЧС та лептонами СМ неможливо
усунути 2.

На перший погляд, розбiжнi члени, отриманi
в роботi [27], здаються структурно складнiшими,
нiж тi, що виникають при розрахунках в неунiтар-
ному калiбруваннi (10). Однак, якщо використати
рiвняння руху,

ℓ̄(𝑝′) ̸𝑝 ′ = 𝑚ℓℓ̄(𝑝
′), − ̸𝑝 ℓ(−𝑝) = 𝑚ℓℓ(−𝑝), (13)

то розбiжнi частини в обох варiантах калiбрування
виявляються еквiвалентними, що пiдтверджує ка-
лiбрувальну незалежнiсть отриманих результатiв.

2 Усi вирази в цiй статтi вiдповiдають arXiv-версiї роботи
[27], де виправлено кiлька друкарських помилок, прису-
тнiх в опублiкованому текстi.
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6. Обговорення

В данiй роботi ми дослiдили векторне розширен-
ня СМ зi взаємодiєю типу Черна–Саймонса. Воно
мiстить новий масивний векторний бозон, який на-
пряму не взаємодiє з фермiонами СМ.

Як вiдомо, петльовi взаємодiї бозона ЧС з фер-
мiонами рiзних ароматiв не мiстять розбiжних до-
данкiв, оскiльки такi доданки пропорцiйнi недiа-
гональним елементам одиничної матрицi (𝑉 †𝑉 )𝑖𝑗 ,
де 𝑉 позначає унiтарну матрицю ККМ, та зану-
ляються [23–25]. Ситуацiя принципово змiнюється
для петльових взаємодiй з фермiонами однакових
ароматiв. Розрахунки, якi були виконанi ранiше в
унiтарному калiбруваннi [27] та враховували лише
взаємодiю (3), продемонстрували, що розбiжнi до-
данки не скорочуються i вiд них не можна позбу-
тися стандартною процедурою перенормування.

В данiй роботi ми розширили аналiз наявно-
стi розбiжних доданкiв на випадок загального 𝑅𝜉-
калiбрування зi скiнченними значеннями калiбру-
вальних параметрiв 𝜉𝑖. Нашi розрахунки показа-
ли, що ультрафiолетовi розбiжностi зберiгаються в
ефективнiй петльовiй взаємодiї ЧС-бозонiв та фер-
мiонiв однакових ароматiв навiть пiсля врахуван-
ня внескiв всiх дiаграм, що вiдповiдають взаємо-
дiям (3), (4) та (6)–(8). Отриманi розбiжнi внески
неможливо прибрати вiдповiдними контрчленами,
оскiльки взаємодiї мiж ЧС-бозонами та фермiона-
ми вiдсутнi у початкових лагранжiанах теорiї. От-
же, лагранжiан (3), хоча й складається з опера-
торiв розмiрностi чотири, є лагранжiаном непере-
нормованої взаємодiї.

Показано, що розбiжнi доданки мають одна-
ковий вигляд (10) як в унiтарному, так i у 𝑅𝜉-
калiбруваннi, що пiдтверджує правильнiсть прове-
дених в роботi громiздких розрахункiв.

Вiдповiдно, петльовi взаємодiї бозона ЧС з фер-
мiонами однакових ароматiв слiд розглядати лише
в рамках пiдходу ефективної теорiї поля [29–31]. Цi
взаємодiї можна записати як:

ℒint
𝑋𝑓𝑓 = 𝑓𝛾𝜇(𝛼𝑓 + 𝛽𝑓𝛾

5)𝑓𝑋𝜇 +

+
𝑚𝑓

𝑣2
𝑓𝜎𝜇𝜈(𝛾𝑓 + 𝛿𝑓𝛾

5)𝑓𝑋𝜇𝜈 + ℒ′
𝑋𝑓𝑓 , (14)

де 𝛼𝑓 , 𝛽𝑓 , 𝛾𝑓 i 𝛿𝑓 є новими безрозмiрними сталими
зв’язку, а ℒ′

𝑋𝑓𝑓 позначає гарно визначений лагран-
жiан взаємодiї, позбавлений розбiжних доданкiв.
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V.Gorkavenko, I. Hrynchak,
O.Khasai, Yu. Borysenkova, M.Tsarenkova

DIVERGENCES IN THE EFFECTIVE
INTERACTION BETWEEN CHERN–SIMONS BOSONS
AND SM FERMIONS IN NON-UNITARY GAUGE

A vector extension of the Standard Model (SM) involving an

interaction of the Chern–Simons type is analyzed. The model

introduces a new massive vector field, referred to as the Chern–

Simons (CS) boson, which does not couple directly to the

fermionic sector of the SM. The study focuses on the struc-

ture and renormalizability of the effective loop-induced inter-

actions between the CS boson and SM fermions in an arbitrary

gauge. It is demonstrated that the ultraviolet divergences aris-

ing in the loop calculations cannot be consistently removed for

interactions involving fermions of identical flavor, while the cor-

responding loop-induced couplings between fermions of distinct

flavors remain finite. The specific interaction operators associ-

ated with divergent coefficients are identified, and their treat-

mentwithin the framework of effective field theory is proposed.

Ke yw o r d s: vector extension of the Standard Model, effective
field theory, Chern–Simons type interaction.
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