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СТРУКТУРА ГIПЕРЯДРА 7
ΛLi В РАМКАХ

МIКРОСКОПIЧНОЇ ТРИКЛАСТЕРНОЇ МОДЕЛIУДК 539.1

Зв’язанi та резонанснi стани гiперядра 7
ΛLi дослiджуються в рамках трикластерної

моделi. Це ядро розглядається як трикластерна структура, що складається з 4He,
дейтрона та лямбда-гiперона. Вибрана трикластерна конфiгурацiя дозволяє нам то-
чнiше описати структуру гiперядра 7

ΛLi та динамiку рiзних процесiв, якi включають
взаємодiю найлегших ядер та гiперядер. Головною метою даних дослiджень є знахо-
дження резонансних станiв у трикластерному континуумi 7

ΛLi та визначення їхньої
природи. У дiапазонi енергiй на 2 МеВ вище трикластерного порога системи 4𝐻𝑒+𝑑+Λ
виявлено низку вузьких резонансних станiв.
К люч о в i с л о в а: кластерна модель, резонанснi стани, трикластерна модель, гiперядра.

1. Вступ

Фiзика гiперядерних систем має вiдносно довгу та
цiкаву iсторiю. Основнi етапи цiєї iсторiї деталь-
но обговорюються в посиланнях [1,2]. У свiтi iснує
велика кiлькiсть експериментальних лабораторiй,
якi намагаються отримати нову iнформацiю що-
до структури гiперядер та їх особливостей. Геогра-
фiя цих лабораторiй та основнi експериментальнi
методи, якi вони використовували для виявлення
особливостей гiперядер, детально представленi в
нещодавно опублiкованому оглядi [3]. Основнi ха-
рактеристики легких гiперядер зiбранi в спецiалi-
зованiй базi даних гiперядер [4]. Цей сайт iнформує
про енергiї зв’язаних станiв та домiнантнi канали
розпаду гiперядер.

Наявнi експериментальнi данi стимулюють ве-
лику кiлькiсть теоретичних дослiджень, спрямо-
ваних на пояснення отриманих експериментальних
даних та прогнозування нових особливостей гiпер-
ядерних систем та їх взаємодiї. Для вивчення гiпе-
рядерних систем були застосованi рiзнi теоретичнi
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моделi. Серед них є моделi оболонок, якi опису-
ють гiперядра з 𝑝- та 𝑠𝑑-оболонками [5, 6], моделi
середнього поля [7,8], ab initio моделi оболонок без
кору [9,10], а також численнi реалiзацiї кластерної
моделi [11–16]. Зазвичай цi дослiдження присвяче-
нi вивченню спектрiв зв’язаних станiв гiперядер.
У деяких з цих дослiджень, проведених в рамках
кластерних моделей, резонанснi стани також роз-
глядалися лише в двокластерному континуумi.

Нашу увагу привернуло гiперядро 7
ΛLi. Цiкавою

особливiстю є те, що його спектр складається з чо-
тирьох зв’язаних станiв. Це перевищує кiлькiсть
зв’язаних станiв у звичайному ядрi 7Li, яке має ли-
ше два зв’язанi стани. Iснує брак експерименталь-
ної та теоретичної iнформацiї щодо резонансних
станiв цього та iнших гiперядер, якi розпадаються
на два або три кластери. Ми хочемо заповнити цю
прогалину, використовуючи трикластерну мiкро-
скопiчну модель. Таким чином, наша головна ме-
та полягає у виявленнi трикластерних резонансних
станiв в 7

ΛLi.
У цiй роботi ми вивчаємо структуру як зв’я-

заних, так i резонансних станiв гiперядра 7
ΛLi.

Оскiльки нас головним чином цiкавлять дослiдже-
ння трикластерних резонансних станiв, ми засто-
сували трикластерну модель, яка була сформульо-
вана в посиланнi [17] i розроблена там для вивче-
ння розпаду легких ядер на три фрагменти (кла-
стери). Цей метод був успiшно застосований для
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вивчення структури легких атомних ядер i осо-
бливо резонансних станiв у трикластерному кон-
тинуумi цих ядер [18–21]. У прийнятiй моделi гi-
перядро 7

ΛLi розглядається як трикластерна кон-
фiгурацiя 4He + 𝑑+ Λ. Взаємодiя шести нуклонiв,
роздiлених на два кластери, моделюється напiвре-
алiстичним нуклон-нуклонним потенцiалом, а су-
ма нуклон-гiперонних потенцiалiв визначає взає-
модiю лямбда-гiперона з двома кластерами.

Наша стаття органiзована таким чином. У роз-
дiлi 2 пояснюються ключовi елементи нашої мо-
делi. Основнi результати представленi в роздiлi
3. Властивостi зв’язаних станiв розглянуто в роз-
дiлi 3.1. Детальне обговорення природи резонан-
сних станiв наведено в роздiлi 3.2. Стаття завер-
шується пiдсумовуванням отриманих результатiв
у роздiлi 4.

2. Метод AMHHB

Коротко викладемо суть трикластерної мiкроско-
пiчної моделi, яку зазвичай називають моделлю
AMHHB, тобто алгебраїчною моделлю (algebraic
model, AM), яка використовує базис гiперсфе-
ричних гармонiк (hyperspherical harmonics basis,
HHB).

Ми починаємо з семичастинкової системи (шiсть
нуклонiв та один лямбда-гiперон), описаної мiкро-
скопiчним гамiльтонiаном. Потiм ми зводимо її до
ефективної задачi трьох частинок, роздiляючи сiм
частинок на три групи (кластери). Далi ми припу-
скаємо, що нам вiдомi хвильовi функцiї, що опи-
сують внутрiшню структуру кожного кластера з
прийнятною точнiстю. Виходячи з цих припущень,
хвильова функцiя 7

Λ Li представляється у виглядi

Ψ𝐽 =
∑︁
𝐿, 𝑆

̂︀𝒜{︁[︀
Φ1

(︀
4He, 𝑆1

)︀
Φ2 (𝑑, 𝑆2) Φ3 (Λ, 𝑆3)

]︀
𝑆
×

×𝜓𝐿𝑆𝐽 (x,y)
}︁
𝐽
, (1)

де Φ1

(︀
4He, 𝑆1

)︀
– це хвильова функцiя альфа-

частинки, а Φ2 (𝑑, 𝑆2) – хвильова функцiя дейтро-
на. Оскiльки лямбда-гiперон вважається безстру-
ктурною частинкою, то множник Φ3 (Λ, 𝑆3) пред-
ставляє спiнову частину функцiї лямбда-гiперона.
Оператор антисиметризацiї ̂︀𝒜 дiє лише на нуклони
i таким чином створює антисиметричну хвильову
функцiю 6Li, яка розглядається як двокластерна

система 4He + 𝑑. Два вектори Якобi x та y вико-
ристовуються для визначення вiдносного положе-
ння кластерiв у просторi. У подальшому, перший
вектор, x, з’єднує центри мас 4He та дейтрона.
Натомiсть другий вектор Якобi, y, визначає вiд-
носне положення лямбда-гiперона вiдносно центра
мас 6Li.

Для представлення хвильової функцiї трикла-
стерної системи (1) ми використовуємо схему 𝐿𝑆
зв’язку. У цiй схемi загальний спiн 𝑆 є векторною
сумою окремих спiнiв кластерiв. Оскiльки спiн 4He
дорiвнює нулю, повний спiн 7

ΛLi є векторною сумою
спiну дейтрона (𝑆2 = 1) та спiну лямбда-гiперона
(𝑆3 = 1/2). Таким чином, повний спiн 7

ΛLi може бу-
ти 𝑆 = 1/2 або 3/2. У цiй моделi повний орбiталь-
ний момент 𝐿 є векторною сумою парцiальних ор-
бiтальних моментiв вiдносного руху кластерiв (во-
ни будуть введенi пiзнiше), а повний кутовий мо-
мент 𝐽 є векторною сумою повного орбiтального
моменту 𝐿 та повного спiну 𝑆.

Хвильова функцiя 𝜓𝐿𝑆𝐽 (x,y) вiдносного руху
кластерiв має бути визначена шляхом розв’яза-
ння рiвняння Шредiнгера, яке проєктується на
систему з трьох кластерiв та включає вибранi
нуклон-нуклонний та нуклон-гiперонний потенцi-
али. Зауважимо, що хвильова функцiя 𝜓𝐿𝑆𝐽 (x,y)
залежить вiд шести змiнних, представлених векто-
рами Якобi x та y. Таким чином, нам потрiбно вве-
сти шiсть квантових чисел для класифiкацiї станiв
системи з трьох кластерiв. Використовуючи реду-
кцiю кутового орбiтального моменту, ми представ-
ляємо цю функцiю у виглядi

𝜓𝐿𝑀𝐿
(x,y) ⇒

⇒
∑︁
𝜆, 𝑙

𝜓𝜆,𝑙;𝐿 (𝑥, 𝑦) {𝑌𝜆 (̂︀x)𝑌𝑙 (̂︀y)}𝐿𝑀𝐿
, (2)

де ̂︀x та ̂︀y – одиничнi вектори, а 𝜆 та 𝑙 – парцiальнi
кутовi моменти, пов’язанi з векторами x та y вiд-
повiдно. З такою редукцiєю ми визначаємо чотири
квантовi числа 𝜆, 𝑙, 𝐿 та 𝑀 . У рамках цiєї моделi
повний орбiтальний iмпульс L є векторною сумою
парцiальних орбiтальних iмпульсiв, L = 𝜆+ l.

Хвильовi функцiї мiжкластерного руху
𝜓𝜆,𝑙;𝐿 (𝑥, 𝑦) задовольняють нескiнченнiй системi
двовимiрних iнтегро-диференцiальних рiвнянь.
Для розв’язання цього системi рiвнянь ми
використовуємо гiперсферичнi координати та гi-
персферичнi гармонiки. У лiтературi iснує кiлька
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еквiвалентних наборiв гiперсферичних гармонiк,
якi включають рiзнi набори гiперсферичних ко-
ординат. Ми вибираємо гiперсферичнi гармонiки
у формi, запропонованiй Цернiке та Брiнкман у
роботi [22]. Ця форма гiперсферичних гармонiк
є досить простою та не вимагає громiздких ана-
лiтичних та числових розрахункiв. Для побудови
гiперсферичних гармонiк Цернiке–Брiнкман нам
потрiбно ввести двi гiперсферичнi координати 𝜌
та 𝜃 замiсть скалярних координат 𝑥 та 𝑦. Перша
координата

𝜌 =
√︀
𝑥2 + 𝑦2 (3)

– це гiперсферичний радiус, а друга координата

𝜃 = arctan

(︂
𝑥

𝑦

)︂
(4)

– це гiперсферичний кут. За фiксованого значення
𝜌 цей кут визначає вiдносну довжину векторiв x
та y:

𝑥 = cos 𝜃, 𝑦 = 𝜌 sin 𝜃. (5)

Видно, що гiперрадiус 𝜌 визначає розмiр трику-
тника 𝜃, який з’єднує центри мас трьох кластерiв,
а гiперкут 𝜃 визначає його форму.

У нових координатах хвильову функцiю (1) мо-
жна представити у виглядi

Ψ𝐽 =

=
∑︁
𝐿,𝑆

∑︁
𝐾,𝜆,𝑙

̂︀𝒜{︁[︀
Φ1

(︀
4He, 𝑆1

)︀
Φ2 (𝑑, 𝑆2) Φ3 (Λ, 𝑆3)

]︀
𝑆
×

×𝑅𝑐 (𝜌)𝒴𝑐 (Ω)
}︁
𝐽
, (6)

де 𝐾 – гiпермомент, а 𝒴𝑐 (Ω) означає добуток

𝒴𝑐 (Ω) = 𝜒
(𝜆,𝑙)
𝐾 (𝜃) {𝑌𝜆 (̂︀x)𝑌𝑙 (̂︀y)}𝐿𝑀𝐿

(7)

i є гiперсферичною гармонiкою для трикластерно-
го каналу

𝑐 = {𝐾,𝜆, 𝑙, 𝐿}. (8)

Гiперсферична гармонiка 𝒴𝑐 (Ω) є функцiєю п’яти
кутових змiнних, Ω = {𝜃, ̂︀x, ̂︀y}. Визначення всiх

компонентiв гiперсферичної гармонiки 𝒴𝑐 (Ω) мо-
жна знайти, наприклад, за посиланням [17]. Скла-
даючи повний базис, гiперсферичнi гармонiки по-
яснюють будь-яку форму трикластерного трику-
тника та його орiєнтацiю. Таким чином, вони по-
яснюють усi можливi режими вiдносного руху
трьох взаємодiючих кластерiв.

Тепер зробимо останнiй крок до числового до-
слiдження трикластерної системи. Щоб спрости-
ти розв’язання набору iнтегро-диференцiальних
рiвнянь для гiперрадiальних хвильових функцiй
𝑅𝑐 (𝜌), ми розкладаємо їх у повному наборi осци-
ляторних функцiй Φ𝑛𝜌,𝐾 (𝜌, 𝑏),

𝑅𝑐 (𝜌) =
∑︁
𝑛𝜌,𝑐

𝐶𝑛𝜌,𝑐Φ𝑛𝜌,𝐾 (𝜌, 𝑏) . (9)

В результатi, система iнтегро-диференцiальних
рiвнянь зводиться до системи лiнiйних алгебраї-
чних рiвнянь∑︁
̃︀𝑛𝜌,̃︀𝑐

[︁
⟨𝑛𝜌, 𝑐| ̂︀𝐻|̃︀𝑛𝜌,̃︀𝑐⟩ − 𝐸⟨𝑛𝜌, 𝑐|̃︀𝑛𝜌,̃︀𝑐⟩]︁𝐶̃︀𝑛𝜌,̃︀𝑐 = 0, (10)

де ⟨𝑛𝜌, 𝑐| ̂︀𝐻|̃︀𝑛𝜌,̃︀𝑐⟩ – матричнi елементи трикластер-
ного гамiльтонiана, а ⟨𝑛𝜌, 𝑐|̃︀𝑛𝜌,̃︀𝑐⟩ – матричнi еле-
менти ядра нормування. Осциляторна функцiя
Φ𝑛𝜌,𝐾 (𝜌, 𝑏) (або, точнiше, радiальна частина хви-
льової функцiї шестивимiрного осцилятора) дорiв-
нює

Φ𝑛𝜌,𝐾 (𝜌, 𝑏) = (−1)
𝑛𝜌 𝒩𝑛𝜌,𝐾 ×

× 𝑟𝐾 exp

{︂
−1

2
𝑟2
}︂
𝐿𝐾+3
𝑛𝜌

(𝑟2), (11)

𝑟 = 𝜌/𝑏, 𝒩𝑛𝜌,𝐾 = 𝑏−3

√︃
2Γ (𝑛𝜌 + 1)

Γ (𝑛𝜌 +𝐾 + 3)
,

де

𝑟 =
𝜌

𝑏
, 𝒩𝑛𝜌,𝐾 = 𝑏−3

√︃
2Γ (𝑛𝜌 + 1)

Γ (𝑛𝜌 +𝐾 + 3)

i 𝑏 – довжина осцилятора.
Систему рiвнянь (10) можна розв’язати чисель-

но, наклавши обмеження на кiлькiсть 𝑛𝜌 гiперрадi-
альних збуджень та кiлькiсть 𝑁𝑐ℎ гiперсферичних
каналiв 𝑐1, 𝑐2, ..., 𝑐𝑁𝑐ℎ

. Процедура дiагоналiзацiї
використовується для визначення енергiй та хви-
льових функцiй зв’язаних станiв. Однак, для об-
числення елементiв 𝑆-матрицi розсiювання та вiд-
повiдних функцiй неперервного спектра необхiдно
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реалiзувати вiдповiднi граничнi умови. Граничнi
умови для хвильових функцiй дво- та тричастин-
кових розпадiв складної трикластерної системи де-
тально обговорюються в посиланнях [17, 23].

Для аналiзу хвильових функцiй багатоканаль-
ної системи, отриманих шляхом розв’язання си-
стеми рiвнянь (10), доцiльно скомбiнувати тi хви-
льовi функцiї осцилятора (11), якi належать обо-
лонцi осцилятора, iз загальною кiлькiстю квантiв
осцилятора 𝑁𝑜𝑠 = 2𝑛𝜌 + 𝐾. Тодi зручно нумеру-
вати оболонки осцилятора квантовим числом 𝑁sh

(𝑁sh = 0, 1, 2, ...), яке ми визначаємо таким чином:

𝑁𝑜𝑠 = 2𝑛𝜌 +𝐾 = 2𝑁sh +𝐾min,

де 𝐾min = 𝐿 для станiв нормальної парностi 𝜋 =
= (−1)

𝐿, та 𝐾min = 𝐿 + 1 для станiв аномаль-
ної парностi 𝜋 = (−1)

𝐿+1. Далi ми вивчатимемо
ваги 𝑊sh (𝑁sh) осциляторних хвильових функцiй
фiксованої оболонки осцилятора 𝑁sh у хвильових
функцiях зв’язаних або неперервних спектральних
станiв. Ваги 𝑊sh(𝑁sh) визначаються таким чином:

𝑊sh(𝑁sh) =
∑︁

𝑛𝜌,𝐾∈𝑁sh

⃒⃒
𝐶𝑛𝜌,𝑐

⃒⃒2
, (12)

та вказують, чи є система, що розглядається, ком-
пактною (де домiнують оболонки осциляторiв з
малими значеннями 𝑁sh), чи вiдносно дисперсною
(де домiнують оболонки осциляторiв з великими
значеннями 𝑁sh).

3. Результати та їх обговорення

Для детального дослiдження зв’язаних та резонан-
сних станiв 7

ΛLi ми вибрали потенцiал Hasegawa–
Nagata (HNP) [24, 25] та нуклон-гiперонний по-
тенцiал [26], який зазвичай називають потенцiа-
лом YNG-NF. Осциляторна довжина 𝑏, яка є єди-

Таблиця 1. Спектр 7
ΛLi,

розрахований з потенцiалами HNP та YNG

𝐽𝜋
AM HHB Експер.

𝐸, МеВ 𝑅𝑚, фм 𝐸, МеВ

1/2+ –7,060 2,183 –7,094
3/2+ –6,587 2,208 –6,402
5/2+ –4,856 2,036 –5,043
1/2+ –1,113 4,524 –3,217

4He+𝑑+ 𝜆 0,0 – 0,0

ним вiльним параметром нашої моделi та визна-
чає розподiл нуклонiв усерединi кластерiв 4He та
𝑑, вибрана таким чином, щоб мiнiмiзувати енергiю
трикластерного порога 4He+ 𝑑+Λ, i для HNP во-
на дорiвнює 𝑏 = 1,357 фм. При такому значеннi
𝑏 енергiя зв’язаного стану 6Li, обчислена з враху-
ванням порога двох кластерiв 4He + 𝑑, становить
𝐸(1+) = −1,431 МеВ, що близько до експеримен-
тального значення 𝐸(1+) = −1,474 МеВ.

Зауважимо, що для вибраної трикластерної кон-
фiгурацiї 4He + 𝑑+ Λ ми маємо три двокластернi
пiдсистеми: 4He + 𝑑, 𝑑 + Λ та 4He +Λ. Вони є ва-
жливими для поточних розрахункiв. Ми спираємо-
ся на результати роботи [27], де розглядалася взає-
модiя дейтрона з альфа-частинкою, та на результа-
ти роботи [28], де детально дослiджено взаємодiю
лямбда-гiперона з дейтроном та альфа-частинкою.

Пiсля вибору осциляторної довжини 𝑏 та
нуклон-нуклонного, 𝑁𝑁 , та нуклон-гiперонного,
𝑁Λ, потенцiалiв, нам потрiбно зафiксувати ще два
вхiднi параметри: кiлькiсть каналiв (або кiлькiсть
гiперсферичних гармонiк) та кiлькiсть гiперрадi-
альних збуджень. Нам доводиться обмежувати-
ся скiнченним набором гiперсферичних гармонiк,
який визначається максимальним значенням гi-
персферичного моменту 𝐾max. Для опису станiв
позитивної парностi ми використовуємо всi гiпер-
сферичнi гармонiки з гiпермоментом 𝐾 ≤ 𝐾max =
12, а стани негативної парностi представленi гiпер-
сферичними гармонiками з 𝐾 ≤ 𝐾max = 11. Ця
кiлькiсть гiперсферичних гармонiк дозволяє нам
описати велику кiлькiсть сценарiїв трикластерно-
го розпаду. Ми також повиннi обмежитися кiлькi-
стю гiперрадiальних збуджень, 𝑛𝜌 ≤ 100. Ця кiль-
кiсть гiперрадiальних збуджень дозволяє нам до-
сягти асимптотичної областi, де всi кластери до-
бре роздiленi, а мiжкластерна взаємодiя, iндуко-
вана потенцiалами 𝑁𝑁 або/та 𝑁Λ, стає нехтовно
малою.

3.1. Зв’язанi стани

Спектр зв’язаних станiв 7
ΛLi, що був отриманий з

потенцiалами HNP та YNG, показано в табл. 1.
Енергiя зв’язаних станiв вiдраховується вiд три-
кластерного порога 4He+𝑑+Λ. Енергiї сильно зв’я-
заних станiв 1/2+, 3/2+ та 5/2+, отриманi в рамках
нашої моделi, дуже близькi до експериментальних
значень. Однак наша модель генерує слабко зв’я-
заний стан 1/2+, який має енергiю нижче порога
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приблизно на 2,1 МеВ. Масовi середньоквадрати-
чнi радiуси 𝑅𝑚 вказують на те, що сильно зв’язанi
стани є компактними станами з 2,0 < 𝑅𝑚 < 2,2 фм,
тодi як слабо зв’язаний стан є дуже дисперсним
станом з великим значенням 𝑅𝑚 = 4,5 фм.

Щоб зрозумiти структуру зв’язаних станiв, роз-
глянемо кореляцiйнi функцiї 𝐷(𝑥, 𝑦), якi визнача-
ються таким чином:

𝐷 (𝑥, 𝑦) = (𝑥𝑦)
2
∑︁
𝜆,𝑙,𝐿

|𝜓𝜆,𝑙;𝐿 (𝑥, 𝑦)|2 .

Зауважимо, що кореляцiйна функцiя визначає
найiмовiрнiшу геометрiю (вiдносне положення)
трьох взаємодiючих кластерiв. На рис. 1 зобра-
жена кореляцiйна функцiя для основного стану
7
ΛLi. Головний пiк кореляцiйної функцiї вiдповiдає
трикластернiй конфiгурацiї, де вiдстань мiж дей-
троном та альфа-частинкою становить приблизно
2,9 фм, а лямбда-частинка розташована поблизу
центра мас 6Li на вiдстанi 1,7 фм.

Варто зазначити, що основний стан 3/2− зви-
чайного ядра 7Li, визначений для трикластерної
конфiгурацiї 4He + 𝑑+ 𝑛 з тими самими вхiдними
параметрами, має нижню енергiю зв’язаного ста-
ну, що дорiвнює −11,24 МеВ вiдносно трикластер-
ного порога (тодi як вiдносна енергiя зв’язаного
стану 7

ΛLi становить −7,06 МеВ), i вiн повинен бу-
ти компактнiшим, нiж 7

ΛLi. Однак, найiмовiрнiша
вiдстань мiж дейтроном та альфа-частинкою ста-
новить 𝑥 = 3,45 фм, а вiдстань мiж нейтроном та
6Li становить 𝑦 = 2,05 фм. Такi вiдстанi вiдповiд-
ають тому, що основний стан 7Li має переважно
двокластерну конфiгурацiю 3H+4He, де валентний
нейтрон знаходиться дуже близько до дейтрона;
див. посилання [29] щодо деталей таких розрахун-
кiв. Крiм того, принцип Паулi вiдiграє важливу
роль у формуваннi зв’язаних станiв 7Li. Антиси-
метризацiя по всiх нуклонах створює забороненi
стани Паулi, якi не спостерiгаються в 7

ΛLi.
Кореляцiйна функцiя для збудженого стану

5/2+ 7
ΛLi показана на рис. 2. Порiвнюючи коре-

ляцiйнi функцiї для станiв 5/2+ та 1/2+, ми бачи-
мо, що у збудженому станi 5/2+ лямбда-гiперон
досить далекий вiд 6Li у порiвняннi зi станом
1/2+. Крiм того, вiдстань мiж дейтроном та альфа-
частинкою, що утворюють 6Li, значно менша у
станi 5/2+, нiж у станi 1/2+. Пiк кореляцiйної фун-
кцiї для стану 5/2+ розташований при 𝑥 = 1,27 фм

Рис. 1. Кореляцiйна функцiя основного стану гiперядра
7
ΛLi як функцiя вiдстаней 𝑥 та 𝑦. Довжина вектора x ви-
значає вiдстань мiж дейтроном та альфа-частинкою, а дов-
жина вектора y визначає вiдстань мiж лямбда-гiпероном
та 6Li

Рис. 2. Кореляцiйна функцiя збудженого стану 5/2+ гiпе-
рядра 7

ΛLi

та 𝑦 = 2,95 фм. Це означає, що в цьому станi вiд-
стань мiж дейтроном та альфа-частинкою майже
вдвiчi менша, нiж в основному станi 1/2+. Для
порiвняння, вiдстань мiж лямбда-гiпероном та 6Li
приблизно вдвiчi менша.

Додаткову iнформацiю про особливостi зв’яза-
них станiв 7

ΛLi можна отримати, аналiзуючи ва-
ги рiзних оболонок осциляторiв у хвильових фун-
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Рис. 3. Ваги рiзних оболонок у хвильових функцiях станiв
1/2+ та 5/2+ гiперядра 7

ΛLi

Рис. 4. Розкладання хвильових функцiй основних станiв
7Li та 7

ΛLi по осциляторних оболонках

Таблиця 2. Параметри резонансних станiв,
знайденi у трикластерному континуумi 7

ΛLi

𝐽𝜋 𝐸, МеВ Γ, МеВ Γ/𝐸

5/2+ 0,290 0,00104 3,6× 10−7

1/2− 1,545 0,264 0,171
3/2− 1,043 0,279 0,267
3/2− 1,551 0,249 0,161
1/2+ 1,520 0,547 0,360
3/2+ 1,604 0,696 0,434

кцiях зв’язаних станiв. Визначення таких величин
можна знайти в посиланнях. [19–21]. На рис. 3
вiдображенi ваги рiзних оболонок осцилятора 𝑊sh

для основного, 1/2+, та першого збудженого, 5/2+,
станiв. Той факт, що найнижча оболонка осци-
лятора, 𝑁sh = 0, робить найвагомiший внесок у
розглядуванi хвильовi функцiї, вказує на те, що
лямбда-гiперон з великою ймовiрнiстю (>50%) мо-
жна знайти всерединi ядра 6Li.

На рис. 4 порiвнюються структури хвильових
функцiй основних станiв 7Li та 7

ΛLi. Нагадаємо, що
стан 3/2

−
є основним станом 7Li, а стан 1/2+ –

основним станом 7
ΛLi. Видно, що найнижча обо-

лонка, 𝑁sh = 0, не дає внеску у хвильову функцiю
основного стану 7Li. Ця оболонка описує конден-
сат трьох кластерiв 4He, 𝑑 та 𝑛, i таким чином вона
є забороненою оболонкою для 7Li згiдно з принци-
пом Паулi.

3.2. Резонанснi стани

У табл. 2 зiбрана iнформацiя про резонанснi ста-
ни 7

ΛLi, визначенi в трикластерному континуумi
4He + 𝑑 + Λ. Енергiї резонансних станiв знаходя-
ться в дiапазонi енергiй вiд 0,2 до 2 МеВ. Схоже,
що стан 3/2− генерує найбiльший кiнематичний та
кулонiвський бар’єр, який знаходиться у двох ре-
зонансних станах з вiдносно малою загальною ши-
риною Γ. Спiввiдношення Γ/𝐸 використовується
для розрiзнення дуже вузьких, вузьких та вiдно-
сно широких резонансних станiв; див., наприклад,
посилання [20,21]. Це вказує на те, що резонансний
стан 5/2− з енергiєю 𝐸 = 0,290 МеВ є найвуж-
чим резонансним станом (iз загальною шириною
1,0 кеВ) у трикластерному континуумi 7

ΛLi, а ре-
зонансний стан 3/2+ з енергiєю 𝐸 = 1,604 МеВ є
найширшим резонансним станом.

Для розумiння природи резонансних станiв до-
цiльно проаналiзувати резонанснi хвильовi фун-
кцiї. На рис. 5 ваги рiзних осциляторних оболо-
нок у хвильових функцiях найвужчих станiв 3/2−
порiвнюються з вагами найширшого резонансного
стану 3/2+. Хвильова функцiя вузького резонан-
сного стану має великий внесок оболонок осци-
ляторiв з малими значеннями 𝑁sh, а саме 0 ≤
≤ 𝑁sh ≤ 10. Необхiдно нагадати, що осцилятор-
нi хвильовi функцiї цих оболонок описують най-
компактнiшi трикластернi конфiгурацiї. Хвильо-
ва функцiя досить широкого резонансного стану
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Рис. 5. Ваги хвильових функцiй рiзних осциляторних обо-
лонок у хвильових функцiях резонансних станiв 3/2− та
3/2+

Рис. 6. Ваги рiзних осциляторних оболонок у хвильовiй
функцiї надвузького резонансного стану 5/2+

поширюється на велику кiлькiсть осциляторних
оболонок.

Структура хвильової функцiї дуже (над)вузь-
кого резонансу 5/2+ показана на рис. 6. Ваги осци-
ляторних оболонок у хвильовiй функцiї резонан-
сного стану мають значно бiльшi амплiтуди. Та-
кi величезнi амплiтуди спостерiгалися для довго-
живучого стану Hoyle в 12C [19] та для станiв,
аналогiчних стану Hoyle, в деяких легких ядрах
[21]. Необхiдно зазначити, що у формуваннi станiв
неперервного спектра 5/2+ беруть участь 126 ка-
налiв, але лише один канал домiнує в розпадi
(або формуваннi) надвузького резонансного ста-

ну 5/2+. Цей канал має такi квантовi числа: 𝑐 =
= {𝐾 = 2,𝑙1 = 0,𝑙2 = 2, 𝐿 = 2, 𝑆 = 1/2}.

4. Висновки

У цiй статтi дослiджувалася структура гiперядра
7
ΛLi з використанням трикластерної мiкроскопiчної
моделi, яка дозволяє вивчати не лише зв’язанi ста-
ни, а й трикластернi резонанснi стани. Розрахованi
енергiї та хвильовi функцiї зв’язаних станiв 7

Λ Li та
виявленi тi канали, якi дають максимальний вне-
сок у хвильову функцiю цих станiв. Також розра-
хованi середньоквадратичнi радiуси зв’язаних ста-
нiв за масою, що вказує на те, що гiперядро 7

ΛLi є
компактнiшим, нiж звичайне ядро 7Li. Було пока-
зано, що ця модель досить добре описує зв’язанi
стани 7

ΛLi. Також було продемонстровано, що всi
зв’язанi стани 7

ΛLi, крiм одного, є дуже компактни-
ми станами з малими значеннями середньоквадра-
тичного радiуса за масою. Використання кореля-
цiйних функцiй дозволило виявити найiмовiрнiше
вiдносне положення (розподiл) кластерiв у коорди-
натному просторi. Крiм того, ваги функцiй фiксо-
ваної осциляторної оболонки у хвильових функцi-
ях зв’язаних станiв 7

ΛLi однозначно свiдчать про
те, що лямбда-гiперон може бути розташований
всерединi ядра 6Li зi значною ймовiрнiстю.

Використана мiкроскопiчна модель включає гi-
персферичнi гармонiки для нумерацiї каналiв три-
кластерної системи та реалiзацiї вiдповiдних гра-
ничних умов для трикластерного континууму. Ця
модель дозволила знайти набiр вузьких та до-
сить широких резонансних станiв у трикластер-
ному континуумi 7

ΛLi. Аналiз резонансних хвильо-
вих функцiй показує, що вузькi резонанснi стани
є дуже компактними трикластерними конфiгура-
цiями з малими вiдстанями мiж взаємодiючими
кластерами.

Отриманi результати можна вважати передба-
ченням iснування вузьких резонансних станiв у гi-
перядрi 7

ΛLi та використовувати їх для планування
майбутнiх експериментiв.

Ця робота була частково пiдтримана Комiте-
том з питань науки Мiнiстерства освiти i на-
уки Республiки Казахстан (проєкт “Структура
легких ядер i гiперядер у багатоканальних та ба-
гатокластерних моделях”, грант №AP22683187)
та Програмою фундаментальних дослiджень Вiд-
дiлення фiзики та астрономiї Нацiональної акаде-
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Переклад на українську мову О. Войтенка

N.Kalzhigitov, S. Amangeldinova, V.S.Vasilevsky

STRUCTURE OF HYPERNUCLEUS 7
ΛLi

WITHIN MICROSCOPIC THREE-CLUSTER MODEL

The structure of bound and resonance states of the hypernu-

cleus 7
ΛLi is studied within a three-cluster model. This nu-

cleus is considered a three-cluster structure consisting of 4He,

a deuteron, and a lambda hyperon. The chosen three-cluster

configuration allows us to describe more accurately the struc-

ture of hypernucleus 7
ΛLi and the dynamics of different pro-

cesses that involve interactions of lightest nuclei and hypernu-

clei. The main goal of the present investigations is to find res-

onance states in the three-cluster continuum of 7
ΛLi and deter-

mine their nature. A set of narrow resonance states is detected

at the energy range 0 < 𝐸 ≤ 2 MeV above the three-cluster

threshold 4He+ 𝑑+Λ.

Ke yw o r d s: cluster model, resonance states, three-cluster
model, hypernuclei.
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