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ТА СТРУКТУРНI ДЕФЕКТИ ХРЯЩОВОЇ ТКАНИНИУДК 538.9, 539.2

Аналiзуються моделi типу “ланцюг в термостатi”, тобто тi моделi, на яких ґрун-
тується статистична фiзика макромолекул. Вiдмiчається, що цi моделi iгнорують
наявнiсть коливального теплового руху. Пропонується модель цього ж типу, названа
пружно-сегментальною, в якiй iснування згаданого руху враховане. Цей рух зводиться
до вигинних коливань, локалiзованих в межах сегмента. Отримано формулу для вiль-
ної коливальної енергiї та деформацiї, спричиненої локальними коливаннями. Запропо-
нована модель використовується при вивченнi впливу локальних коливань на поведiнку
дефектiв, якi можуть виникати в хрящовiй тканинi. Розглянуто можливий механiзм,
завдяки якому пiд дiєю локальних коливань вiдбувається зникнення дефектiв.
К люч о в i с л о в а: хрящова тканина, дефекти, макромолекула, вiльна коливальна
енергiя.

1. Вступ

За визначенням (див., наприклад, [1–3] та iн.), ма-
кромолекула – це молекула, що складається з ве-
ликої (порядка 103 i бiльше) кiлькостi атомних
груп (ланок), якi, з’єднуючись мiж собою ковален-
тними хiмiчними зв’язками, утворюють полiмер-
ний ланцюг.

Граф макромолекули наведено на рис. 1, а, де в
ролi вершин графа є ланки, а в ролi ребер графа –
хiмiчнi зв’язки мiж ланками.

Термiн “макромолекула” та “ланцюг” є синонiма-
ми. Для макромолекули виконується нерiвнiсть

𝐿𝑚

𝑏𝑚
≫ 1, (1)

де 𝐿𝑚 – контурна довжина ланцюга, 𝑏𝑚 – розмiр
ланки.

Зважаючи на нерiвнiсть (1), прийнято (див., на-
приклад, [1–3] та iн.) розглядати макромолекулу
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як термодинамiчну систему. Як вiдомо (див., на-
приклад, [4] та iн.), статистична фiзика ґрунтує-
ться на загальнiй моделi, яку умовно можна назва-
ти “термодинамiчна система в термостатi”. Частко-
вим варiантом загальної моделi є модель “ланцюг
в термостатi”, на якiй ґрунтується статистична фi-
зика макромолекул (див., наприклад, [1–3] та iн.).
Розглянемо особливостi цiєї моделi. Вiдомо, що в
адiабатичному наближеннi (див., наприклад,[5] та
iн.) термодинамiчну систему можна розглядати як
сукупнiсть силових центрiв – частинок.

Для конденсованих систем iснує два типи тепло-
вого руху: коливальний та термоактивований. За
визначенням, термоактивований є послiдованiстю
термофлуктуацiйних актiв, в кожному з яких си-
стема переходить з одного локально-рiвноважного
стану в iнший, долаючи енергетичний бар’єр. В
процесi цього переходу група частинок (кiнетична
одиниця) здiйснює стрибком так зване елементар-
не перемiщення.

Тривалiсть 𝜏𝑆 елементарного термофлуктуацiй-
ного акту визначається (див., наприклад, [6] та iн.)
формулою

𝜏𝑆 = 𝜏𝐻 exp

(︂
Δ𝐹

𝑘B𝑇

)︂
, (2)

де Δ𝐹 = 𝐹𝐻−𝐹𝑆 , 𝜏𝑆 та 𝜏𝐻 – середнi значення часiв
перебування системи в станах, якi характеризую-
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Рис. 1. Граф (а) та моделi макромолекули: сегментальна
(b), модель “намистинок” (с). 1 – ланка, 2 – хiмiчний зв’язок,
3 – шарнiр, 4 – сегмент, 5 – силовий центр (“намистинка”),
6 – безтiлесна нитка

ться вiльними енергiями 𝐹𝐻 та 𝐹𝑆 , 𝑇 – температу-
ра, 𝑘B – стала Больцмана. Локально-рiвноважний
стан, який характеризується вiльною енергiєю 𝐹𝑆

встановлюється в областi скiнченного розмiру. Час
𝜏𝑆 за порядком величини дорiвнює часовi встанов-
лення цього стану [6]. Величина 𝐹𝑆 визначається
формулою

𝐹𝑆 = 𝑈𝑆 + 𝐹𝑉 𝑆 , (3)

де 𝑈𝑆 – потенцiальна енергiя цiєї областi при 𝑇 =
= 0, 𝐹𝑉 𝑆 – вiльна енергiя коливань, локалiзованих
в цiй областi. Температура в згаданiй областi 𝑇
встановлюється внаслiдок взаємодiї згаданих ло-
кальних коливань з делокалiзованими коливання-
ми, якi вiдiграють роль термостата [7, 8].

В якiй мiрi модель “ланцюг в термостатi” узго-
джується з викладеною вище загальною схемою
теплового руху?

Моделi ланцюга типу “ланцюг в термостатi”, якi
фiгурують в статистичнiй фiзицi макромолекул,
умовно можна роздiлити на двi групи. Структур-
ною одиницею першої групи є сегмент, завдяки чо-
му i назва моделi “сегментальна модель”. Сегмен-
том називають дiлянку ланцюга, протягом якої
зберiгається кореляцiя в розташуваннi ланок. Се-
гментальна модель є послiдовнiсть шарнiрно з’єд-
наних мiж собою сегментiв(рис. 1, b). Довжина ℓ
сегмента за порядком величини збiгається з ра-
дiусом кореляцiї в розташуваннi ланок. Сегмент
вважається абсолютно жорстким. Це означає, що
ℓ служить просторовим масштабом сегментальної

моделi. Цю властивiсть сегмента можна поясни-
ти таким чином. Сегмент вiдiграє роль кiнетичної
одиницi. Це означає, що до початку його перемi-
щення має встановитися стан локальної рiвнова-
ги, час встановлення якої становить 𝜏𝑆 . Саме за
цей час встановлюється i кореляцiя мiж ланками,
з яких складається сегмент. То ж час 𝜏𝑆 висту-
пає в ролi часового масштабу сегментальної моде-
лi. Оскiльки в моменти часу, якi роздiленi iнтерва-
лом 𝜏𝑆 , сегмент знаходиться в станi локальної рiв-
новаги, то при застосуваннi часової шкали з мас-
штабом 𝜏𝑆 сегмент рухається як єдине цiле, тобто,
поводить себе як абсолютно жорстке утворення.
Отже, сегментальна модель являє собою послiдов-
нiсть жорстких сегментiв, з’єднаних за допомогою
шарнiрiв. Очевидно, що в такiй iдеалiзованiй мо-
делi коливання неможливi.

Структурною одиницею моделей другої групи
є силовий центр. Така модель являє собою суку-
пнiсть таких центрiв, з’єднаних безтiлесною ни-
ткою (рис. 1, с). Звiдси назва: “модель намисти-
нок”. Очевидно, що безтiлеснiсть нитки виключає
виникнення коливань в згаданiй моделi.

Мета даної статтi: запропонувати варiант моделi
“ланцюг в термостатi”, в якому була б передбаче-
на можливiсть виникнення в ланцюговi теплових
коливань.

2. Пружно-сегментальна
модель ланцюга: механiзм
локалiзацiї теплових коливань

Модель, яку ми пропонуємо, вiдноситься до групи
моделей, якi були названi сегментальними. Прин-
ципова вiдмiннiсть пропонованої моделi вiд iнших
полягає в тому, що тепер сегмент розглядається
як пружний стержень. Це спонукає назвати мо-
дель пружно-сегментальною. Ланцюг тепер має
вигляд послiдовностi пружних стержнiв i, по су-
тi, стає хвилеводом. Взагалi кажучи, орiєнтацiя се-
гментiв у просторi може бути довiльною. Завдяки
цьому хвилi, що поширюються в ланцюговi, зазна-
ють розсiяння при переходi з одного сегмента в
iнший. Хвилi, для яких виконується умова

Λ ≤ 2𝑙, (4)

(де Λ – довжина хвилi) зазнають настiльки iнтен-
сивного розсiяння, що практично повнiстю вiдби-
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ваються вiд кiнцiв сегмента, локалiзуючись при
цьому в його межах.

Введемо в розгляд декартову систему коорди-
нат iз осями 1, 2, 3, направивши вiсь 1 уздовж
осi стержня. Через W позначимо змiщення части-
нок стержня. Як вiдомо (див., наприклад, [9] та
iн.), в стержнi можуть поширюватись три типи
хвиль: поздовжня, для якої коливальним змiще-
нням є компонента 𝑊1, та двi вигиннi хвилi, для
яких коливальними змiщеннями є компоненти 𝑊2

та 𝑊3.

3. Теплова деформацiя ланцюга,
спричинена локальними коливаннями

Збудження теплових коливань призводить до
деформацiї сегментiв, яку прийнято називати
тепловою.

Позначимо через 𝑙0 довжину сегмента за тем-
ператури 𝑇0. При пiдвищеннi температури до де-
якого значення Т стан сегмента, якому вiдповiдає
його довжина 𝑙0, стає нерiвноважним, а сегмент
прагне перейти в рiвноважний стан, в якому дов-
жина сегмента дорiвнює 𝑙𝑇 . Величину деформацiї
сегмента визначатимемо рiвнiстю

𝜉 = 𝑙0 − 𝑙𝑇 . (5)

Як вiдомо (див., наприклад, [10] та iн.), в по-
лiмерному ланцюговi реалiзується три типи коли-
вань: валентнi, пов’язанi зi змiною довжини вален-
тних зв’язкiв, деформацiйнi, пов’язанi зi змiною
валентних кутiв, та крутильнi, викликанi поворо-
тами зв’язкiв один вiдносно одного. Згаданi коли-
вання характеризуються нерiвностями

𝐾𝜙 ≪ 𝐾𝛼 ≪ 𝐾𝑙, (6)

де 𝐾𝑙, 𝐾𝛼, 𝐾𝜙 – силовi сталi валентних, деформа-
цiйних та крутильних коливань вiдповiдно.

В поширеннi поздовжньої хвилi беруть участь
переважно силовi константи 𝐾𝑙 та 𝐾𝛼, на вiдмi-
ну вiд вигинних хвиль, поведiнка яких визначає-
ться переважно силовою константою 𝐾𝜙. Позначи-
мо через 𝑄 вигинну жорсткiсть стержня, через ℎ
його товщину. Вочевидь, вигинна жорсткiсть стер-
жня 𝑄, окрiм 𝐾𝜙, має також залежати вiд товщи-
ни стержня ℎ, тобто, має бути функцiєю

𝑄 = 𝑄 (𝐾𝜙, ℎ). (7)

Вигляд цiєї функцiї визначимо, використовуючи
розмiрностi величин. Згiдно з [9] 𝑄 має розмiрнiсть
Нм2, розмiрнiсть 𝐾𝜙 – Н/м. Таким чином, з точнi-
стю до сталого множника порядку одиницi маємо
рiвнiсть

𝑄 ≈ 𝐾𝜙ℎ
3. (8)

В прийнятiй моделi сегмент-одновимiрний об’єкт,
що являє собою сукупнiсть частинок, розташова-
них в лiнiю. То ж товщина стержня, який служить
моделлю сегмента – не що iнше, як розмiр части-
нок. Згiдно з нерiвностями (6) поздовжня жорс-
ткiсть сегмента суттєво перевищує його поперечну
жорсткiстю. Це дозволяє вважати, що деформацiя
𝜉 зумовлена виключно вигинними коливаннями.
При збудженнi в сегментi вигинних коливань дов-
жина сегмента зменшується. Це скорочення можна
розглядати як наслiдок дiї на сегмент стискаючої
сили

𝜉𝑃 = 𝑞, (9)

де 𝑞 – коефiцiєнт пружностi сегмента.
Як уже згадувалось, в прийнятiй моделi ланцю-

га, сегменти з’єднанi мiж собою шарнiрами. Згiдно
з теорiєю пружностi (див., наприклад, [9] та iн.) в
цьому випадку для частот 𝜔𝑛 вигинних коливань
має мiсце формула

𝜔𝑛 = 𝜔0𝑛

√︀
1− 𝑃𝑎𝑛 (𝑛 = 1, 2, ..,𝑀 − 1), (10)

де 𝑀 – кiлькiсть частинок у сегментi.
В формулi (10) прийнято позначення

𝜔0𝑛 = 𝑛2𝜋2

√︃
𝑄

𝑚𝑙40
, (11)

𝑎𝑛 =
𝑙20

𝑛2𝜋2𝑄
, (12)

де 𝑚 – маса, вiднесена до одиницi довжини.
В пропонованiй моделi локально-рiвноважний

стан, про який iшлося у вступi – це стан пiдсисте-
ми коливань, локалiзованих у сегментi. Припису-
вати цiй пiдсистемi певне значення вiльної енергiї
можна лише у випадку, коли виконується нерiв-
нiсть 𝑀 ≫ 1. То ж пропоновану модель можна
використовувати лише стосовно жорстколанцюго-
вих полiмерiв.

Користуючись загальною формулою, якою ви-
значається вiльна енергiя у фiзицi твердого тiла
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(див., наприклад, [5] та iн.), запишемо вiльну ко-
ливальну енергiю сегмента 𝐹𝑉 𝑆 у виглядi

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln 2 𝑠ℎ
~𝜔𝑛

2𝑘B𝑇
, (13)

де ~ = ℎ/2𝜋, ℎ – стала Планка. Поява множника 2
в правiй частинi цiєї формули пов’язана з iснува-
нням в сегментi двох вигинних хвиль. Вважаючи
виконаною умову

~𝜔𝑛

2𝑘B𝑇
≪ 1, (14)

переписуємо формулу (13) у виглядi

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln
~𝜔𝑛

𝑘B𝑇
. (15)

Пiдставляючи рiвнiсть (10) у формулу (15), отри-
муємо

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln
~𝜔0𝑛

𝑘B𝑇
+ 𝐹

′

𝑉 𝑆 , (16)

де прийнято позначення

𝐹
′

𝑉 𝑆 = 𝑘B𝑇

𝑀−1∑︁
𝑛=1

𝑙𝑛 (1− 𝑃𝑎𝑛). (17)

Вважаючи справедливою нерiвнiсть

𝑃𝑎𝑛 ≪ 1. (18)

переписуємо формулу (17) у виглядi

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃

𝑀−1∑︁
𝑛=1

𝑎𝑛. (19)

Пiдставляючи вираз (12) у формулу (19), отриму-
ємо

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃
𝑙20

𝜋2𝑄

𝑀−1∑︁
𝑛=1

1

𝑛2
. (20)

Розрахувавши наближено суму ряду

𝑀−1∑︁
𝑛=1

1

𝑛2
≈

∞∑︁
𝑛=1

1

𝑛2
=

𝜋2

6
, (21)

переписуємо формулу (20) у виглядi

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃
𝑙20
6𝑄

. (22)

Прирощення вiльної енергiї 𝐹
′

𝑆 сегмента, пов’язане
з силою 𝑃 , визначається формулою

𝐹
′

𝑆 = 𝑈
′

𝑆 + 𝐹
′

𝑉 𝑆 , (23)

де 𝑈
′

𝑆 – прирощення потенцiальної енергiї сегмен-
та, викликане дiєю сили 𝑃 .

Маючи на увазi формули (9) та (22) та очевидну
нерiвнiсть

𝜉/𝑙0 ≪ 1, (24)

переписуємо рiвнiсть (23) у виглядi

𝐹
′

𝑆 =
1

2
𝑞2 − 𝑘B𝑇𝑞

𝑙20
6𝑄

. (25)

З умови рiвноваги сегмента

𝜉
𝜕𝐹

′

𝑆

𝜕

⃒⃒⃒⃒
𝑇

= 0 (26)

знаходимо рiвноважне значення 𝜉 = 𝜉𝑇 , пов’язане
з локальними коливаннями,

𝜉𝑇 =
𝑘B𝑇 𝑙

2
0

6𝑄
. (27)

Вiдповiдно для вiдносної теплової деформацiї
сегмента

𝜀 =
𝑙 − 𝑙0
𝑙0

, (28)

з урахуванням рiвностей (5) та (27) маємо фор-
мулу

𝜀 = −𝛽𝑇, (29)

де прийнято позначення

𝛽 =
𝑘B𝑙0
6𝑄

. (30)

Оцiнимо значення 𝛽. Значення 𝐾𝜙 ≈ 3, 4𝐻
м запози-

чуємо iз [10]. Приймаючи значення ℎ = 3 · 10−10 м,
𝑙0
ℎ = 30 i використовуючи формули (8) та (30),
отримуємо 𝛽 = 2,2 · 10−4 1/град.

Таким чином, згiдно iз формулою (29) при пiд-
вищеннi температури внаслiдок збудження тепло-
вих коливань довжина сегментiв, а отже, i контур-
на довжина ланцюга, мають зменшуватись.
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4. Механiзм утворення дефектiв
та регенерацiя хрящової тканини:
вплив локальних коливань

Розглянемо приклад застосування пропонованої
моделi. Iснує клас полiмерних систем, якi нази-
вають гiдрогелями (див., наприклад, [11] та iн.).
Вони складаються з полiмера i води, причому по-
лiмернi ланцюги утворюють каркас. До таких си-
стем вiдносять (див., наприклад, [12] та iн.) хря-
щову тканину людського органiзму. Полiмери, що
входять до складу хрящової тканини- це колаген
(10–12%) та протеоглiкани (7–8%). Практично вся
iнша частина тканини припадає на воду [12]. Вi-
домо [12], що колагеновi ланцюги утворюють во-
локна, мiж якими розташовуються ланцюги про-
теоглiканiв. Варiант структури хрящової тканини,
запропонований в [13], зображено на рис. 2.

В медичнiй лiтературi (див., наприклад, [14] та
iн.) iдеться про пошкодження (дефекти) тканини,
якi виникають пiд дiєю зовнiшнього навантажен-
ня. Конкретний вигляд дефекту залишається не-
визначеним. Розглянемо можливий механiзм утво-
рення таких дефектiв.

В теорiї пружностi [15] побутує модель “цилiн-
дрична оболонка з пружним наповнювачем”. Ви-
користаємо цю модель для опису поведiнки воло-
кна, вважаючи товщину стiнки оболонки рiвною
ℎ – товщинi ланцюга.

Називатимемо таку модель оболонковою. Її на-
ведено на рис. 3, а, де товстими лiнiями зображено
ланцюги, а пунктирною лiнiєю обмежено дiлянку,
зайняту пружним наповнювачем ( таким наповню-
вачем вважатимемо ланцюги, розташованi всере-
денi оболонки).

Нехай уздовж осi волокна дiє стискаюча сила
𝑃1, i нехай ця сила сягає порогового значення, при
якому цилiндрична форма оболонки втрачає стiй-
кiсть. В момент втрати стiйкостi, коли деформацiї
залишаються малими i їх можна обчислювати, ви-
користовуючи лiнiйну теорiю пружностi, поряд з
цилiндричною формою, стає можливою хвиляста
форма, значення 𝑃1 є точкою бiфуркацiї [15]. Схе-
матично хвилясту форму оболонки зображено на
рис. 3, b.

Повернiмося до пружно-сегментальної моделi.
Як видно з рис. 3, b, хвиляста форма оболонки
для ланцюгiв, якi входять до складу оболонки,
означає утворення “горбiв”. Як уже згадувалось,

Рис. 2. Схема структури хрящової тканини: 1 – колагеновi
волокна, 2 – протеоглiкановi прошарки (пластини)

a b

c d
Рис. 3. Оболонкова модель волокна: а – недеформоване
волокно (1 – сегмент, 2 – шарнiр, 3 – пружний наповню-
вач), b – волокно в момент втрати стiйкостi, с – утворення
дефекту в волокнi, d – вигиннi моменти, що виникають в
дефектi при пiдвищеннi температури

ця модель являє собою послiдовнiсть сегментiв,
з’єднаних шарнiрами (на рис. 3, в шарнiри зобра-
жено подвiйними кружальцями). Шарнiр не пере-
дає вигинаючого моменту, то ж довжина дiлянки
ланцюга, на якiй має утворитись “горб” вiдстань
мiж кiнцями сегмента зменшується i стає рiвною
𝑙𝑃 (рис. 3, в).

Тепловi коливання, локалiзованi в межах се-
гмента, сприяють втратi стiйкостi цилiндричною
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формою, фактично знижуючи порогове значення
𝑃1, згiдно з теорiєю пружностi. Головну роль в та-
кому сприяннi вiдiграє коливання з довжиною хви-
лi Λ = 2𝑙 – коливання з найбiльшою амплiтудою.
Завдяки цiй обставинi сегмент i набуває форми,
зображеної на рис. 3, b.

Однак процес не обмежується малими деформа-
цiями. В дiйсностi, втрата стiйкостi супроводжує-
ться великими деформацiями, так що форму се-
гмента, зображену на рис. 3, b, слiд розглядати як
промiжну. Такi великi деформацiї розраховуються
за допомогою нелiнiйної теорiї пружностi [15].

Кiнцеву форму сегмента можна уявити, кори-
стуючись якiсними мiркуваннями. Як уже згаду-
валось, промiжна форма, зображена на рис. 3, в,
утворилась завдяки тому, що вiдстань мiж кiнця-
ми сегмента зменшилась вiд 𝑙 до 𝑙𝑃 . Для отри-
мання кiнцевої форми ця вiдстань має зменшу-
ватись далi. Таке зменшення продовжутиметься
до тих пiр, допоки протилежнi частини сегмен-
та не зустрiнуться, утворивши дiлянку довжи-
ною 𝐻 (рис. 3, c), де згаданi частини з’єдную-
ться мiж собою мiжланцюговими зв’язками. Зав-
дяки цим зв’язкам пiсля припинення дiї сили 𝑃1

волокно продовжує зберiгати форму, зображену на
рис. 3, с, у волокнi виникає дефект.

Одним iз засобiв лiкування пошкодженої хрящо-
вої тканини є використання аплiкацiї теплоносiїв
(парафiн, озокерит, грязелiкування) (див., напри-
клад, [14] та iн.). Пiд дiєю теплоносiїв пiдвищує-
ться температура в пошкодженiй областi. Вважає-
ться, що завдяки цьому розширюються перифери-
чнi судини, пiдсилюється гемодинамiка i лiмфовiд-
тiк, активується метаболiзм, що сприяє регенерацiї
хрящової тканини.

Як вiдомо авторам, про молекулярний механiзм
регенерацiї в лiтературi не йдеться. Ґрунтуючись
на моделi дефекта, зображенiй на рис. 3, с, можна
уявити такий механiзм регенерацiї. Пiдвищення
температури в областi пошкодження призводить
до збiльшення iнтенсивностi локальних теплових
коливань в цiй областi i, зокрема, в сегментi, де
розташовується дефект. При цьому контурна дов-
жина дiлянки ланцюга, що вiдповiдає згаданому
сегменту має зменшитись, як того вимагає фор-
мула (29). Внаслiдок такого зменшення в лан-
цюговi виникають вигинаючi моменти 𝑀1 (див.,
рис. 3, d), якi прагнуть розiрвати мiжмолекулярнi
зв’язки, що iснують на дiлянцi довжиною 𝐻. Пi-

сля розриву цих зв’язкiв сегмент повертається в
своє вихiдне нормальне положення, зображене на
рис. 3, а.

Таким чином, локальнi тепловi коливання сто-
совно дефектiв вiдiграють двояку роль. З одного
боку, при дiї на волокно стискаючої сили цi коли-
вання сприяють втратi стiйкостi, яка закiнчується
утворенням дефектiв. З iншого ж боку, за вiдсу-
тностi зовнiшньої сили та пiдвищення температу-
ри локальнi коливання сприяють зникненню дефе-
ктiв, стимулюючи тим самим регенерацiю хрящо-
вої тканини.

5. Висновки

Статистична фiзика макромолекул ґрунтується на
моделi “ланцюг в термостатi”, де iснування коли-
вального теплового руху iгнорується. Варiант цiєї
моделi, запропонований в данiй статтi i названий
пружно-сегментальною моделлю, дозволяє враху-
вати iснування такого руху. Вiдмiтна риса про-
понованої моделi полягає в тому, що в нiй се-
гмент розглядається як пружний стержень. В цiй
моделi сегмент полiмерного ланцюга – це дiлян-
ка ланцюга, де iснує локальна рiвновага. Вiльна
енергiя цього локально-рiвноважного стану дорiв-
нює сумi потенцiальної енергiї частинок при тем-
пературi 𝑇0 та вiльної енергiї коливань, локалiзо-
ваних в сегментi. Локалiзацiя вiдбувається вна-
слiдок розсiяння теплових хвиль на кiнцях се-
гмента. Вiльна коливальна енергiя визначається,
в основному, вигинними хвилями, завдяки чому
при збудженнi теплових коливань сегмент зазнає
скорочення.

Локальнi коливання вiдiграють позитивну роль
в процесi регенерацiї хрящової тканини. До скла-
ду останньої входять волокна, якi складаються з
колагенових ланцюгiв. Пiд дiєю стискаючої сили,
направленої уздовж осi волокна, в цих ланцюгах
можуть утворюватись дефекти, що є наслiдком
втрати стiйкостi цилiндричною формою волокна.
Стосовно таких дефектiв локальнi коливання вiдi-
грають двояку роль. З одного боку, при дiї стиска-
ючої сили цi коливання сприяють згаданiй втратi
стiйкостi, а з iншого боку, при закiнченнi дiї зовнi-
шньої сили скорочення ланцюгiв, спричинене ло-
кальними коливаннями, сприяє зникненню дефе-
ктiв, i вiдповiдно регенерацiї пошкодженої хрящо-
вої тканини.
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LOCAL VIBRATIONS
AND STRUCTURAL DEFECTS
IN CARTILAGINOUS TISSUE

Models of the “chain in a thermostat” type, i.e., models on

which the statistical physics of macromolecules is based, have

been analyzed. It has been noted that these models ignore vi-

brational thermal motion. A model of the same type, referred

to as the elastic-segmental and where the existence of this mo-

tion is taken into account, has been proposed. This motion is

reduced to bending vibrations localized within a segment. For-

mulas for the free vibrational energy and deformation caused

by local vibrations have been obtained. The proposed model is

used to study the influence of local vibrations on the behav-

ior of defects that can arise in cartilaginous tissue. A possible

mechanism by which defects disappear under the influence of

local vibrations has been considered.

Ke yw o r d s: cartilaginous tissue, defects, macromolecule, free
vibrational energy.
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