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LOCAL VIBRATIONS AND STRUCTURAL
DEFECTS IN CARTILAGINOUS TISSUE

Models of the “chain in a thermostat” type, i.e., models on which the statistical physics of
macromolecules is based, have been analyzed. It has been noted that these models ignore vi-
brational thermal motion. A model of the same type, referred to as the elastic-segmental and
where the existence of this motion is taken into account, has been proposed. This motion is re-
duced to bending vibrations localized within a segment. Formulas for the free vibrational energy
and deformation caused by local vibrations have been obtained. The proposed model is used to
study the influence of local vibrations on the behavior of defects that can arise in cartilaginous
tissue. A possible mechanism by which defects disappear under the influence of local vibrations
has been considered.
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1. Introduction

By definition (see, e.g., Ref. [1–3]), the macromolecule
is a molecule consisting of a large number (on the
order of 103 or more) of atomic groups (links) that
are connected to each other by covalent chemical
bonds and form a polymer chain. A graph of a macro-
molecule is presented in Fig. 1, 𝑎, where links are the
graph nodes, and chemical bonds between the links
are the graph edges.

The terms “macromolecule” and “chain” are used
as synonyms. For a macromolecule, the following in-
equality holds:

𝐿𝑚

𝑏𝑚
≫ 1, (1)

where 𝐿𝑚 is the contour length of the chain, and 𝑏𝑚
is the link size. According to inequality (1), it is cus-
tomary (see, e.g., Refs. [1–3]) to consider a macro-
molecule as a thermodynamic system. As is known
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(see, e.g., Ref. [4]), statistical physics is based on a
general model, on which can be conditionally called
“a thermodynamic system in a thermostat”. A partial
version of the general model is “a chain in a thermo-
stat” model, which the statistical physics of macro-
molecules is based (see, e.g., Refs. [1–3]).

Let us consider the features of this model. It is
known that in the adiabatic approximation (see, e.g.,
work [5]), a thermodynamic system can be consid-
ered as a set of force centers, particles. For condensed
systems, there are two types of thermal motion: vi-
brational and thermally activated. By definition, the
thermally activated motion is a sequence of ther-
mofluctuation events; in each of them, the system
passes from one local equilibrium state to another
by overcoming an energy barrier. In the course of
this transition, a group of particles (a kinetic unit)
performs the so-called elementary displacement by
means of a jump.

The duration 𝜏𝑆 of an elementary thermofluctua-
tion event is determined (see, e.g., Ref. [6]) by the
formula
𝜏𝑆 = 𝜏𝐻 exp

(︂
Δ𝐹

𝑘B𝑇

)︂
, (2)

where Δ𝐹 = 𝐹𝐻 − 𝐹𝑆 , 𝜏𝑆 and 𝜏𝐻 are the average
values of the system’s residence times in the states
characterized by the free energies 𝐹𝐻 and 𝐹𝑆 , respec-
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tively, 𝑇 is the temperature, and 𝑘B is the Boltzmann
constant. A local equilibrium state characterized by
the free energy 𝐹𝑆 is established in a finite-size re-
gion. In terms of the order of magnitude, the time
𝜏𝑆 is equal to the settling time of this state [6]. The
value of 𝐹𝑆 is determined by the formula

𝐹𝑆 = 𝑈𝑆 + 𝐹𝑉 𝑆 , (3)

where 𝑈𝑆 is the potential energy of this region at 𝑇 =
= 0, and 𝐹𝑉 𝑆 is the free energy of vibrations local-
ized in this region. The temperature 𝑇 is established
in the region mentioned above as a result of interac-
tion of the indicated local vibrations with delocalized
vibrations, which play the role of a thermostat [7, 8].

To what extent does the “chain in a thermostat”
model agree with the general scenario of thermal mo-
tion outlined above?

Models of the “chain in a thermostat”-type, which
are used in the statistical physics of macromolecules,
can be conditionally divided into two groups. The
structural unit in the first group is a segment; there-
fore the model is called a “segmental model”. The
segment is a section of a chain along which the cor-
relations in the link arrangement are preserved. The
segmental model consists of a sequence of segments
connected to each other by hinges (Fig. 1, 𝑏). The
segment length ℓ coincides, in order of magnitude,
with the link arrangement correlation radius. Every
segment is considered to be absolutely rigid. This im-
plies that the quantity ℓ serves as the spatial scale in
the segmental model. This property of the segment
can be explained as follows.

A segment plays the role of a kinetic unit. This
means that, before the segment starts to move, a lo-
cal equilibrium state has to be established, and the
corresponding settling time is equal to 𝜏𝑆 . This is a
time interval during which correlation between the
links that compose a segment is established. Thus the
time 𝜏𝑆 plays the role of the time scale in the seg-
mental model. Since the segment is in a local equi-
librium state at time moments separated by the in-
terval 𝜏𝑆 , when using the 𝜏𝑆 time scale, the segment
moves as a whole, i.e., it behaves as an absolutely
rigid unit. Therefore, the segmental model is a se-
quence of rigid segments connected by hinges. It is
obvious that vibrations are impossible in such an ide-
alized model.

The structural unit in the models belonging to the
second group is a force center. The model consists of

Fig. 1. Macromolecule graph (𝑎) and models: segmental (𝑏),
“bead” model (𝑐). Link (1 ), chemical bond (2 ), hinge (3 ),
segment (4 ), force center (“bead”) (5 ), massless thread (6 )

a set of such centers connected by a massless thread
(Fig. 1, 𝑐), whence its name “bead model” follows. It
is obvious that the zero mass of the thread excludes
the appearance of vibrations in this model.

The aim of this paper is to propose a variant of the
“a chain in a thermostat” model, that allows for the
presence of thermally induced vibrations in the chain.

2. Elastic-Segmental Chain
Model. Localization Mechanism
of Thermal Vibrations

The proposed model belongs to the group of mod-
els referred to as segmental. The fundamental differ-
ence between proposed model and the others is that
in this case, a segment is considered to be an elas-
tic rod. This leads to the model being called elastic-
segmental. The chain is now a sequence of elastic rods
and, in effect, becomes a waveguide. Generally speak-
ing, the spatial orientation of the segments can be
arbitrary. As a result, waves propagating along the
chain undergo scattering when passing from one seg-
ment to another. The waves satisfying the condition

Λ ≤ 2ℓ, (4)

where Λ is the wavelength, undergo such intense scat-
tering that they are almost completely reflected from
the segment ends, thus becoming localized within the
segment itself.

Let us consider a Cartesian coordinate system with
axes 1, 2, and 3, where axis 1 is directed along the
rod axis. Let W denote the displacement of rod par-
ticles. As is known (see, e.g., Ref. [9]), three types of
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waves can propagate in the rod: a longitudinal wave,
for which the vibrational displacement is the compo-
nent 𝑊1, and two bending waves, for which the vibra-
tional displacements are the components 𝑊2 and 𝑊3.

3. Thermal Chain Deformation
Caused by Local Vibrations

Excitation of thermal vibrations leads to the defor-
mation of segments, which is usually referred to as
thermal.

Let us denote by ℓ0 the segment length at tem-
perature 𝑇0. If the temperature increases to a certain
value 𝑇 , the segment state, to which its length ℓ0 cor-
responds, becomes nonequilibrium, and the segment
tends to pass into an equilibrium state, in which the
segment length is equal to ℓ𝑇 . The value of the seg-
ment deformation is determined by the parameter

𝜉 = ℓ0 − ℓ𝑇 . (5)

It is known (see, e.g., Ref. [10]) that three types of
vibrations are realized in a polymer chain: stretch-
ing vibrations, associated with changes in the lengths
of valence bonds; deformation vibrations, associated
with changes in valence angles; and torsional vibra-
tions, induced by rotations of bonds with respect to
each other. The indicated vibrations are character-
ized by the inequalities

𝐾𝜙 ≪ 𝐾𝛼 ≪ 𝐾ℓ, (6)

where 𝐾ℓ, 𝐾𝛼, and 𝐾𝜙 are the force constants of
stretching, deformation, and torsional vibrations, re-
spectively.

The force constants 𝐾ℓ and 𝐾𝛼 are mainly involved
in the propagation of the longitudinal wave, whereas
the behavior of bending waves is mainly governed by
the force constant 𝐾𝜙. Let 𝑄 denote the bending stiff-
ness of the rod, and ℎ its thickness. Obviously, the
bending stiffness of the rod 𝑄, in addition to 𝐾𝜙,
must also depend on the rod thickness ℎ; i.e., it must
be a function of these parameters,

𝑄 = 𝑄 (𝐾𝜙, ℎ). (7)

The form of this function can be found using di-
mensional analysis. According to Ref. [9], 𝑄 has
the dimension N ·m2, and 𝐾𝜙 has the dimension
N/m. Hence, to an accuracy of a constant factor of
order one, the following relation holds

𝑄 ≈ 𝐾𝜙ℎ
3. (8)

In the adopted model, a segment is a one-dimensio-
nal object, that consists of a set of particles arranged
in a line. Thus the thickness of a rod that serves as
a segment model is nothing but the size of the par-
ticles. According to inequalities (6), the longitudinal
stiffness of a segment substantially exceeds its trans-
verse stiffness. This circumstance allows us to assume
that the deformation 𝜉 is induced exclusively by bend-
ing vibrations. When bending vibrations are excited
in a segment, the segment length decreases. This re-
duction can be regarded as a consequence of the ac-
tion of a compressive force

𝜉𝑃 = 𝑞, (9)

on the segment, where 𝑞 is the segment elasticity co-
efficient.

As already mentioned, in the adopted chain mo-
del, the segments are connected to each other
by hinges. According to elasticity theory (see, e.g.,
Ref. [9]), in this case, the frequencies 𝜔𝑛 of bending
vibrations are described by the formula

𝜔𝑛 = 𝜔0𝑛

√︀
1− 𝑃𝑎𝑛 (𝑛 = 1, 2, ..,𝑀 − 1), (10)

where 𝑀 is the number of particles in the segment,

𝜔0𝑛 = 𝑛2𝜋2

√︃
𝑄

𝑚𝑙40
, (11)

𝑎𝑛 =
𝑙20

𝑛2𝜋2𝑄
, (12)

and 𝑚 is the chain mass per unit length. In the pro-
posed model, the local equilibrium state discussed in
the Introduction, is a state of a subsystem of vibra-
tions localized within a segment. A definite value of
free energy can be ascribed to this subsystem only
if the inequality 𝑀 ≫ 1 is satisfied. Therefore, the
proposed model can be applied only to rigid-chain
polymers.

Using the general formula that defines the free en-
ergy in solid-state physics (see, e.g., Ref. [5]), we can
write the free vibrational energy of the segment 𝐹𝑉 𝑆

in the form

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln

(︂
2 sinh

~𝜔𝑛

2𝑘B𝑇

)︂
, (13)

where ~ = ℎ/(2𝜋), and ℎ is Planck’s constant. The
factor 2 appears on the right-hand side of this for-
mula due to the existence of two bending waves in
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the segment. Assuming that the condition

~𝜔𝑛

2𝑘B𝑇
≪ 1 (14)

is fulfilled, we rewrite formula (13) in the form

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln
~𝜔𝑛

𝑘B𝑇
. (15)

Substituting equality (10) into formula (15), we ob-
tain

𝐹𝑉 𝑆 = 2𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln
~𝜔0𝑛

𝑘B𝑇
+ 𝐹

′

𝑉 𝑆 , (16)

where

𝐹
′

𝑉 𝑆 = 𝑘B𝑇

𝑀−1∑︁
𝑛=1

ln (1− 𝑃𝑎𝑛). (17)

Provided the inequality

𝑃𝑎𝑛 ≪ 1, (18)

let us rewrite formula (17) as follows:

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃

𝑀−1∑︁
𝑛=1

𝑎𝑛. (19)

Substituting expression (12) into formula (19), we ob-
tain

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃
ℓ20
𝜋2𝑄

𝑀−1∑︁
𝑛=1

1

𝑛2
. (20)

Since
𝑀−1∑︁
𝑛=1

1

𝑛2
≈

∞∑︁
𝑛=1

1

𝑛2
=

𝜋2

6
, (21)

we can rewrite formula (20) in the form

𝐹
′

𝑉 𝑆 = −𝑘B𝑇𝑃
ℓ20
6𝑄

. (22)

The increment 𝐹
′

𝑆 of the segment free energy asso-
ciated with the force 𝑃 is determined by the formula

𝐹
′

𝑆 = 𝑈
′

𝑆 + 𝐹
′

𝑉 𝑆 , (23)

where 𝑈
′

𝑆 is the increment of the segment potential
energy caused by the action of the force 𝑃 . Bearing in
mind formulas (9), (22), and the obvious inequality

𝜉/ℓ0 ≪ 1, (24)

we rewrite equality (23) in the form

𝐹 ′
𝑆 =

1

2
𝑞𝜉2 − 𝑘B𝑇𝑞𝜉

ℓ20
6𝑄

. (25)

From the condition of segment equilibrium,

𝜕𝐹 ′
𝑆

𝜕𝜉

⃒⃒⃒⃒
𝑇

= 0, (26)

we find the equilibrium value 𝜉 = 𝜉𝑇 associated with
local vibrations,

𝜉𝑇 =
𝑘B𝑇ℓ

2
0

6𝑄
. (27)

Accordingly, for the relative thermal deformation of
the segment,

𝜀 =
ℓ− ℓ0
ℓ0

, (28)

and taking equalities (5) and (27) into account, we
obtain the formula

𝜀 = −𝛽𝑇, (29)

where

𝛽 =
𝑘Bℓ0
6𝑄

. (30)

Let us evaluate 𝛽. The value 𝐾𝜙 ≈ 3.4 N/m is
taken from Ref. [10]. Adopting the values ℎ = 3×
× 10−10 m, ℓ0/ℎ = 30, and using formulas (8) and
(30), we obtain 𝛽 = 2.2 × 10−4 1/degree.

Hence, according to formula (29), if the tempera-
ture increases and thermal vibrations are excited, the
segment length and, therefore, the contour length of
the chain decrease.

4. Mechanism of Defect Formation
and Regeneration of Cartilage Tissue.
Influence of Local Vibrations

Let us consider an example of the application of
the proposed model. There is a class of polymer sys-
tems called hydrogels; see, e.g., Ref. [11]. They con-
sist of a polymer and water, with the polymer chains
forming a framework. Such systems include (see, e.g.,
Ref. [12]) the cartilaginous tissue of humans. The
polymers that constitute the cartilaginous tissue are
collagen (10–12%) and proteoglycans (7–8%). Almost
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Fig. 2. Schematic diagram of the cartilaginous tissue struc-
ture: collagen fibers(1 ), proteoglycan interlayers (plates) (2 )

a b

c d
Fig. 3. Shell model of the fiber: undeformed fiber (𝑎), segment
(1 ), hinge (2 ), elastic filler (3 ); fiber at the moment of stabil-
ity loss (b); formation of a fiber defect (𝑐), bending moments
arising in the defect as the temperature increases (𝑑)

the entire remaining part of the tissue is water [12]. It
is known [12] that collagen chains form fibers, with
proteoglycan chains located between them. A vari-
ant of the cartilaginous tissue structure proposed in
Ref. [13], is shown in Fig. 2.

One of the problems discussed in the medical lit-
erature is tissue damage (defect) that appears under
the action of an external load; see, e.g., Ref. [14]. The
specific form of defect remains undefined. Let us con-
sider a possible mechanism for the formation of such
defects.

In elasticity theory [15], there exists a model known
as “a cylindrical shell with an elastic filler”. We use
this model to describe the behavior of the fiber, as-
suming the thickness of the shell wall to be equal
to the chain thickness ℎ. This model is referred to
as the “shell model”. It is exhibited in Fig. 3, a; the
thick lines depict chains, and the dashed lines mark
the area occupied by an elastic filler (as such a filler,
we will consider chains located inside the shell).

Let a compressive force 𝑃1 act along the fiber axis,
and let this force reach a threshold value at which
the cylindrical shape of the shell loses its stability. At
the moment of stability loss, when the deformations
remain small so that they can be calculated using
linear elasticity theory, besides the cylindrical shape,
a wavy shape becomes possible (it is schematically
depicted in Fig. 3, 𝑏). The corresponding value of 𝑃1

is the bifurcation point [15].
Let us return to the elastic-segmental model. As

can be seen from Fig. 3, 𝑏, the wavy shape of the shell
for the chains composing the shell means the forma-
tion of “humps”. As already mentioned, this model
is a sequence of segments connected by hinges (in
Fig. 3, 𝑏, the latter are shown as double circles). A
hinge does not transmit a bending moment, so the
length of the chain section on which the “hump” ap-
peared, i.e., the distance between the segment ends,
decreases and becomes equal to ℓ𝑃 (Fig. 3, 𝑏).

Thermal vibrations localized within the segment,
facilitate the loss of the cylindrical shape stability; in
effect, according to elasticity theory, they reduce the
threshold value of 𝑃1. The main contribution to this
effect is provided by vibrations with the wavelength
Λ = 2ℓ and the maximum amplitude. Due to this cir-
cumstance, the segment acquires the shape depicted
in Fig. 3, 𝑏.

However, the process is not restricted to small de-
formations. In reality, the loss of stability is accom-
panied by large deformations, therefore the segment
shape shown in Fig. 3, 𝑏 should be regarded as tran-
sient. Large deformations are calculated using nonlin-
ear elasticity theory [15].

The final segment shape can be envisaged using
qualitative considerations. As already mentioned, the
transient shape shown in Fig. 3, 𝑏 was formed because
the distance between the segment ends decreases from
ℓ to ℓ𝑃 . To obtain the final shape, this distance must
be reduced further. This reduction continues until the
opposite parts of the segment meet. As a result, a
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section of length 𝐻 is formed (Fig. 3, 𝑐), where the
indicated parts become interconnected via interchain
bonds. Owing to these bonds, after the action of the
force 𝑃1 terminates, the fiber continues to maintain
its shape, as is shown in Fig. 3, 𝑐. Therefore, there
appears a defect in the fiber.

One of the methods used to treat damaged car-
tilaginous tissue is the application of heat-transfer
agents (paraffin, ozokerite, mud therapy) to the af-
fected area; see, e.g., Ref. [14]. Under the influence of
heat transfer agents, the temperature in the damaged
area increases. It is believed that this action leads to
peripheral vasodilation, enhanced hemodynamics and
lymphatic drainage, and activation of metabolism,
which favors the regeneration of cartilaginous tissue.

To our knowledge, the molecular mechanism of tis-
sue regeneration has not been discussed in the liter-
ature. Based on the defect model shown in Fig. 3,
the following regeneration mechanism can be pro-
posed. An increased temperature in the damaged area
leads to an increase in the intensity of local thermal
vibrations in this area and, in particular, in the seg-
ment where the defect is located. The contour length
of the chain section corresponding to the mentioned
segment decreases in this case, as required by for-
mula (29). As a result of such a decrease, bending
moments 𝑀1 arise in the chain (see Fig. 3, 𝑑), which
tend to break the intermolecular bonds existing in the
section of length 𝐻. After these bonds are broken, the
segment returns to its original normal position (see
Fig. 3, 𝑎).

Hence, local thermal vibrations play a dual role
with respect to defects. On the one hand, if a com-
pressive force acts on the fiber, these vibrations con-
tribute to the loss of stability, which leads to the for-
mation of defects. On the other hand, in the absence
of an external force and temperature growth, local
vibrations contribute to the disappearance of defects,
thereby stimulating the regeneration of cartilaginous
tissue.

5. Conclusions

The statistical physics of macromolecules is based on
the model “a chain in a thermostat”, in which the
existence of vibrational thermal motion is ignored. A
variant of this model proposed in this work and is
referred to as the elastic-segmental model, makes it
possible to take this motion into consideration. A dis-
tinctive feature of the proposed model is that it treats

a segment as an elastic rod. In this model, a segment
of a polymer chain is a section of the chain where
local equilibrium exists. The free energy of this local
equilibrium state is equal to the sum of the potential
energy of the particles at temperature 𝑇0 and the free
energy of vibrations localized within the segment. Lo-
calization occurs due to the scattering of thermal
waves at the segment ends. The vibrational free en-
ergy is mainly determined by bending waves. As a
result, the segment undergoes contraction when ther-
mal vibrations are excited.

Local vibrations play a positive role in the process
of cartilage regeneration. The latter includes fibers
consisting of collagen chains. Under the action of a
compressive force directed along the fiber axis, de-
fects can appear in these chains, as a consequence
of the loss of stability of the cylindrical shape of the
fiber. Local vibrations play a dual role with respect to
such defects. On the one hand, under the action of a
compressive force, these vibrations contribute to the
aforementioned loss of stability. On the other hand,
when the external force ceases, the chain contraction
caused by local vibrations contributes to the disap-
pearance of defects and, consequently, the regenera-
tion of damaged cartilaginous tissue.
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ЛОКАЛЬНI КОЛИВАННЯ ТА СТРУКТУРНI
ДЕФЕКТИ ХРЯЩОВОЇ ТКАНИНИ

Аналiзуються моделi типу “ланцюг в термостатi”, тобто тi
моделi, на яких ґрунтується статистична фiзика макромо-
лекул. Вiдмiчається, що цi моделi iгнорують наявнiсть ко-
ливального теплового руху. Пропонується модель цього ж
типу, названа пружно-сегментальною, в якiй iснування зга-
даного руху враховане. Цей рух зводиться до вигинних ко-
ливань, локалiзованих в межах сегмента. Отримано форму-
лу для вiльної коливальної енергiї та деформацiї, спричине-
ної локальними коливаннями. Запропонована модель вико-
ристовується при вивченнi впливу локальних коливань на
поведiнку дефектiв, якi можуть виникати в хрящовiй тка-
нинi. Розглянуто можливий механiзм, завдяки якому пiд дi-
єю локальних коливань вiдбувається зникнення дефектiв.

Ключ о в i с л о в а: хрящова тканина, дефекти, макромо-
лекула, вiльна коливальна енергiя.
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