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ANALYTIC CALCULATION
OF DYNAMICAL FRICTION FOR PLUMMER
SPHERE IN ULTRALIGHT DARK MATTER

The dynamical friction force acting on a spatially extended probe (globular clusters and dwarf
galazies) moving in the environment of ultralight bosonic dark matter in the state of the Bose—
Einstein condensate is determined. Modelling the probe as a r sphere of radius Iy, the radial
and tangential components of the dynamic friction force are found in an analytic form, which
reduces in the limit l, — 0 to the corresponding analytic expressions obtained in the literature
in the case of a point probe. The dependence of dynamical friction force on boson particle mass
was analyzed and found to be non-monotonous in the interval 10~23+1072! eV.
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1. Introduction

Dynamical friction acting on objects moving through
a galactic environment is an important and ex-
tensively studied phenomenon. It was first studied
by Chandrasekhar [1] who analysed the gravita-
tional drag on a moving star due to the fluctuat-
ing gravitational field of neighboring stars. Later this
study was extended to the case of gaseous medium
in [2-6].

Recently, models of ultralight dark matter (ULDM)
with particle masses in the range 10723-1072'eV have
attracted significant attention due to their intriguing
phenomenology (for a review, see Refs. [7-10]). These
models successfully reproduce the large-scale struc-
ture of the Universe like cold dark matter (CDM)
models and avoid some problems at the small scale
faced by CDM. A distinctive feature of ULDM is the
formation of the Bose-Einstein condensate (BEC) of
ultralight bosons at galactic centers [11].
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As to the dynamical friction acting on moving ob-
jects in the ULDM environment, it has been studied
for point probes in the case of fuzzy ULDM when the
dark matter self-interaction is absent [12-15]. Still, it
has been found that even rather weak ULDM self-
interaction can notably modify the frictional force af-
fecting stellar motion [16-19]. On larger scales, dy-
namical friction also plays an important role for mo-
tion and the evolution of more massive and spatially
extended astrophysical objects such as globular clus-
ters and dwarf galaxies. Since dynamical friction is
proportional to the square of the moving object’s
mass, its influence on globular clusters can be con-
siderably stronger compared to the case of individual
stars [20].

Globular clusters are often modeled (as well as
sometimes dwarf galaxies) using the density profile of
the Plummer sphere [21]. Since the de Broglie wave-
length of dark matter particles composing ULDM can
be significantly larger than the interstellar distances
within a globular cluster, the dynamical friction effect
is not simply the sum of individual stellar dynamical
friction forces [13,22]. We would like to mention also
that the sizes of globular clusters (up to 10 pc) are
much smaller than the de Broglie wavelength of the
ULDM (approximately equal or larger 300 pc). Nu-
merical studies have shown that for extended objects
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like globular clusters, the frictional force is weaker
than for point probes of the same total mass, poten-
tially alleviating the Fornax timing problem [17,23].

In dwarf galaxies, like Fornax, globular clusters are
inside the soliton core of ULDM in the BEC state.
This motivates us to analyse in the present paper the
dynamical friction force acting on a moving Plummer
sphere in the environment of the BEC of ultralight
bosonic dark matter.

Previously, the dynamical friction force acting on
a circularly moving object (modelled as the Plum-
mer sphere) in the BEC soliton core was determined
in [24]. While the expression for the tangential force
was obtained in an analytical form convenient for cal-
culations, the radial component of the dynamical fric-
tion force was given as the Cauchy principal value of
an integral over momentum and was computed only
numerically. In this paper, we aim to integrate over
momentum and obtain the radial component of the
dynamical friction force in the same analytic form as
it was derived for a point probe in [19].

The paper is organized as follows. The dynamical
friction for circularly moving Plummer sphere in the
linear response approach is presented in Sec. 2. Ana-
lytic calculation of the imaginary and real compo-
nents of this force is given in Sec. 3. The dependence
of dynamical friction force on boson particle mass m
is analyzed in Sec. 4. Conclusions are drawn in Sec. 5.

2. Dynamical Friction Force
for Circularly Moving Plummer Sphere

In this section, we determine the dynamical friction
force acting on a Plummer sphere, which moves on
a circular orbit of radius r¢ in ultralight dark matter
composed of ultralight bosonic particles of mass m
with constant angular velocity €2 in the steady-state
regime.

Let us consider a Plummer sphere of radius [, and
total mass M, whose mass density profile is given by

R
4rl3 (1 n T2)5/2

A

ppi(r) (1)

This density profile is approximately constant for r <
< 1, and quickly decreases as ~ 1/r® for r > [,,. Using
[25], we easily find the following Fourier transform of
the Plummer sphere mass density:

ppl(k) = Mk‘lp K1 (klp) = ppl(klp), (2)
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where Kj(x) is the modified Bessel function of the
second kind. Since Ki(z) — 1/x as  — 0, we
find that ppi(kl,) — M for I, — 0. As expected,
this means that the mass density profile of Plummer
sphere in momentum space tends to the mass density
profile of a point probe given by p,(k) = M.

To analyze the dynamical friction force, we follow
the setup developed in [18, 26] and set the density
of unperturbed ULDM to a constant value py. Then,
moving Plummer sphere perturbs due to gravita-
tional interaction the ULDM density ppMm(t,r) =
= po(1 + a(t,r)). Using the results of [26] for self-
interacting ULDM and generalizing the correspond-
ing analysis to the case under consideration, we ob-
tain that the ULDM density inhomogeneity (¢, r) is
governed by the following equation in the linear re-
sponse approach:

20— 9%+ V2% _ 4nGpm(r — ro(t)) (3)
a — Vi =4dr - .

t sVr 4m2 PP1 CM

Here, ¢, is the adiabatic sound velocity of DM super-
fluid which is given by the first derivative of pressure
with respect to density [10]

o= v/ 9PDM ’ (4)
m

where ppy is the DM density, g is the coupling con-
stant of the DM self-interaction and m is mass of
the DM particle. Since pressure is proportional to
g, sound velocity cs vanishes in fuzzy dark matter
where g = 0. Radius-vector roy(t) denotes the po-
sition of the center of mass of the moving Plummer
sphere. The total dynamical friction force acting on
the moving Plummer sphere (see, for more detailed
consideration [24]) is given by

+oo
dwd?k ik
_ 2
Ffr(t) = (47TG) £o / dT/W E X
0
(_k)pPl(k) e—in—‘rikrc]V[ (t)—ikI‘CM(t—T)

PPl
X . K4
—(wHie)? + 2k? + 55

()

Since ppi(k) depends only on the absolute value
of momentum %, the subsequent integration d3k =
= k2dkdQy, over Qy, proceeds as in [19] and we obtain
the following total dynamical friction force acting on
the circularly moving Plummer sphere:

A7 G2 M?pg
"

Fy (t) = ',F’ (6)
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where F is dimensionless force whose nonzero radial
and tangential components equal

lmax £—2
F = Z Yem, {Re (SM 1 S’}’}’Jrll*) 7+
=1 my=—
+Im (575 - 57 } (7)
Here
Yo = (=)™ (é(f ;zlm—l);)! 8

2 2
—/ 0 -
xr(?’“"l>r(1+ +ml>} . (8)
2 2
and the key quantity which defines the dynamical fric-
tion force is

“+o0
2 / kdk p},(kly) je(kro)je—1(kro) ()
M2 ) 2k + 41522 — (M2 + ie)?

my —
Spo—1=

where ¢ — +0, ¢ and m; are the azimuthal and
quantum numbers, respectively, jy(z) is the spherical
Bessel function. In the case of a point probe where
ppi(kl,) — M, the integral over k in Eq.(9) was cal-
culated analytically in [19]. In the next section, we
calculate this integral for ppi(kl,) and find the an-
alytic expressions for the real and imaginary parts
of SZ}"_ 1

3. Analytic Calculation of SZZ

Representing the function ppi(kl,) in the integral
form

pri(Kly) M/
0

and taking into account that the integrand is an even
function of z, we obtain

MQOO o0
T/du/dvx

0 0

(10)

P%l(klp) =

eilpuk + e—ilpuk

W Tt 022 S —0)2)p2
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M
= 77](1{3117)’

: (1)

where u =z 4y, v =2 — ¥y, and

T F ilyuk ilyuk
7/ u —1 u
—|—e
z// ———— dudwv,
00

flu,v) = (1 + i(u + u)Z)w <1 + i(u - v)2>3/2. (13)

(12)

The spherical Bessel functions j;(x) can be ex-
pressed through the spherical Hankel functions
hl(1,2) ()

(nf" (@) + 1P (@) (14)

N =

Ji(x) =

Further, it is convenient to split the product
Ji(z)ji—1(z) into two components, which include as
a factor only one exponential function e** or e~2,
see for details, e.g., [25],

45,(x) i1 (z) = b (@)Y, (@) + b (2)hP) (2) +

g1(z)

W (@)hD (2) = g1(2) + g (),

g2()

+ b (@) (@) +

(15)
where
(as(z) — iby(x))e*™,
(x) + iba(x))e=>*, (16)

g1(z) = a1(x) + iby () +
g2(z) = a1 (z) —ib1 () + (a9
91(—2) = —g2(z).

Here a;(x), b;(x) are polynomials in inverse powers
of x. Then Eq. (9) takes the form

m c2m? Ook
Sy = "5 1717 (g1(kro) + ga(kro))dk, (17)
where T1(k?) = (k? + »?)(k* — k2) and we used
4m2k? 4+ k* — 4mPmi0? =
= (k +i3c)(k —is)(k — k3)(k + k3) (18)
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Fig. 1. Poles of the integrand in J in the complex plane k for
my; >0 (a) and m; < 0 (b)

with
2002 /2
Q
%:\/imcs( 1+ml24+1> , (19)
m2cd
e 1/2
Q
]{33:\/5’[’77,08( 1+T:LZQ 1 —1) (20)
69

The function n(kl,) is defined in Eq. (1
structure

7 dudv zl uk ilpuk

+e
//f s
0 0

Note that the functions kg (krg) and kgo(krg) have
only one simple pole at k = 0. Hence, we can split
the integral in Eq. (17) into two integrals

1) and has the

m c2m? kn(kly,)
Sl ll 1= 3 ][ 1317 a1 k"l‘o)dk’-i-

c 2m? kn
8 TI(k

go(kro)dk = Sy + Sa, (21)

which converge in the sense of the Cauchy principal
value (which is denoted by the sign ).

By replacing kK — —k in the second integral Sy and
taking into account that go(—k) = —gi1(k), we find
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that Sy = S1. Therefore,

S{j}’_1:2slzcszl // (“ v
0 0

T ilpuk o —ilyuk
x ][ e g (kro) dk.

TI(k2) (22)
J
For J, we have
eilpuk + e—ilpuk
e}
) eilpuk + efilpuk
Tamres <H(k2)k91(k7“0)>7 (23)

where the contour C' corresponds to the integra-
tion from —oo to 4+oco along the real axis k£ and
passing around the point £k = 0 in the upper half-
plane. Further,

eilpuk + e~ ipuk
/Wkgl(kTO) dk =

) II(k?)
C

=Ji+ Jo.

1l uk e*ilpuk
/ k‘gl (k’/‘o) dk + / 7]€gl(k"l“o) dk =
C

(24)

To calculate the integral J;, we close the contour in
the upper half-plane and apply the Cauchy formula.
We begin with the case m; > 0. In the upper half-
plane, we have two simple poles at k = k3 and k = i,
see Fig. 1. We find

i

J = ——-s
! 2?4+ k3

(_ e_”lpugl(izro) + eil”“ksgﬂkgro)).
(25)

To calculate Jo, we should consider two cases with
lpu > 2rg and lu < 2rg. We have

kefilpukgl(kro)
P2 / T(k?)

ke tlpuk ) ' oikr
= /W(al + Zbl +(a2 - Zb2)€ ’ 70) dk. (26)
—_—— ——

(1) (2) 1 1
hy hi 2y iR,
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Case l,u > 2ry. Closing the contour in the lower
half-plane and applying the Cauchy formula, we find

T2 = %2#74:1@2) (—e gy (iserg) + €17* ga (ksro)) —
) kgl(kro)e_“P“k
— 2mi yes (nm : 27)

where the last term is due to the pole at £ = 0 and
we took into account that gi(—z) = —ga(2).

Case l,u < 2rg. Now for the part h( )hl( )1 we need
to close the contour in the lower half—plane and for
the part with h( )h(l) we need to close the contour
in the upper half—plane We obtain

kefilpuk
J2_/7H(k2) X
C
x [P (ko)) (ro) + 1 (kro a2, (ko) | dk =

T e 2) /. 1) .
= (- D D) o) +

+ etk P (lgrg) A, (kSTO)) N

e kB (kro)h(?, (krg)e~ilouk
A TI(k?) *
T sl wg (1) /- 1) .

+ pEpyE 2 (— e*lr hl( )(z%ro)hl@l (i3erg) +

+ €7ilpuk3 hl(l)(kg’l“o)hl(l)l (]4137"0)). (28)

Thus, we have the following results for J = J; + Js +

ilpuk —ilpuk
; eP"t+e P
im res (Wkgl(kro))

(i) Case lyu > 2ro. The integral J equals

A
J= %ZL:/{% (— ey (i3erg) 11 (i3ero ) +
+ eiZPUk3jl(k3T0)jl_1(k‘37“0)>. (29)
The residue term

kg1 (kro) sin(l,uk)
—21 res ( ) p (30)

vanishes because numerator is regular at k = 0.
(ii) Case lyu < 2rg. We have
s

J:%2+k§

(— e_”lpu(hl(l)(i%ro)hl(i)l(i%ro) +
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o+ h{ (isero 2 (isero) + b (iero) i) (isero)) —

1)

— e"lpuhl(l)(i%ro)hg_

1 (iserg) +

+ e ks D (karg )Y, (ko) +

+ eil”uk3<hz(1) (k3ro)hl(£)1(k37“o) +hz(1)(k37”0)hl(3)1(k3r0) +
+h? (kgro)hfi)l(ksro))) +

(khl(l)(km) ( ilpuk ;

+ 27 res H(k:Q)

Ji—1(kro) +

+ ie_il”u’gyll(kro))) (31)

where y;(z) = (hl(l)(x) - ihl(z) (x))/2i is the spherical

Neumann function.
For the imaginary part of J, we obtain

47

Im J = ———=ji(ksro)ji-1(ksro) cos(lpuks),  (32)
+ k3
where l,u > 2ry and
dr .
ImJ = ———=ji(ksro)ji-1(ksro) cos(lpuks) —
+ k3
k cos(l,uk)
- ores (e () o

for l,u < 2rg. The residue term in Eq. (33) is zero as
it is the residue of an even function of k. Therefore,
for the imaginary part of Sml_ 1, we find the following
expression:

me2m? i (ksro)ji—1 (ksro)
2%+ k3

//cos lyuk) dudy —

_ 27rcsm pPl(kglp)jl(kSTO)jlfl(k3ro) (34)
M7+ B) |

my
ImSl’l_l =

which exactly coincides with the result previously ob-
tained in [24]. In addition, taking the limit of vanish-
ing Plummer sphere radius (I, — 0) and using that
ppi(z) = M as x — 0, this expression completely
agrees with the imaginary part found in [19] in the
case of a point probe.
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Let us proceed to the real part of S}'}" ; and begin
with the real part of J. We have

AT (w
32 + k2

+ ji(k3ro)ji—1(ksro) sin(lpuk3)>

xlpu

ReJ = — Ji(iserg)ji—1(izerg) +
(35)

for l,u > 2ry and

™ . . .
gz (i i)Y (isero) +
3

ReJ =
+ hl(l)(i%ro)hl(i (irerg)) —e
— sin(lyuks) (b (ksro ), (ksro) +
+ hl(Q)(ksTo)hl(i)l(k:‘aTo)) -

—2cos(lpuks) (ji(ksro)yi—1(ksro) +
21

21.2,.2
w2ksrg

— 27 res <H(ka) yi(kro)yi—1(kro) sin(lpuk‘)>

+yl(k3ro)jl—1(ksro))) -
(36)

for lpu < 2rg. The last two terms in (36) are due to
the residue term in expression (31)

kh(l) ]
ires (22)( ek (kro) + ie” ”"“kylﬂ(kzro)) =

~Tes ( (k) (sin(lpuk)ji(kro)ji—1(kro) +
+ cos (luk)ji(kro)yi—1(kro) +

+ sin ({,uk)y; (kro)yi—1(kro) +

+ cos (lpuk')yl(kro)jl_l(kro))), (37)
where we took into account that the residue of an
even function at the zero value of its argument van-
ishes. The first two terms are regular at zero, and
therefore, their contribution is zero. The last term
has a simple pole at zero and can be easily calculated
using the asymptotics

Jil_l

][ 1( ) ﬂ +O($l+1)’ (38)
nie) =~ 2R o, (39)
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”lP“hl(l)(i%ro)hl(i)l (isero) —

We find
cos(l,uk) ) 1
pd (mky[(kro)]l_l(kTo)> = Wg)r% (40)

As to the residue term in Eq. (36), it equals

ksin(lpuk)
Alw) = res (H(k?)

_ n)!
7%2—1—1@224” l—n—l)><

yi(kro)yi—1 (kTo)) =

_1\m\ (_ —-m 2(n—m)+1
x Z <k2v}z+2 + in)+2> ( 21n)+3 Uyt )
= \k3 rg" T (2n — 2m + 1)!
(41)
with details of its calculation given in Appendix.
Finally, using Egs. (35), (36) and (37), we obtain
the following real part of Sl =y for my > 0:

2,2
Re Smil = 7T26+mk2 ( 1Ry 71 (i3erg)ji—1 (iserg) —
— Roji(ksro)ji—1(ksro) — %(yl(k?ﬂ“o)qu(kﬂo) +
+ ji(ksro)ji—1(ksro)) — %(]z(karo)yl 1(ksro) +

+ 1 (ksro)ji—1(ksro)) — QT(z]l(mo)hfPl (izerg) +

A+
+ hl(l)(i}fro)hl(i)l(i%ro)) — —Zal hl(l)(i%ro)hl(i)l (z’%ro))
2.2 2.2

weim ™m cs
2%2k2 2Q4 Q5a (42)
where
T T e T OOSln(kSl u)
=[d d = [ d P d
mi= [ Fuw) faf Fuw)
21’;0 0 ZL';U 0
(43)
B, 5
etHlou sin(ksl,u)
Qizfdu/ dv,Q:/du/ P/ v,
1 0 0 fluv) 2 0 0 S, )
(44)
T E
cos(kslpu) / / dv
=/ d d = [ d
@ / “/ Py 9Ty
0 0 0 0
(45)
T
A(u)dv
= | d 4
Q= [ [ S0 1o
0 0

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 11



Analytic Calculation of Dynamical Friction for Plummer Sphere

In the case m; < 0, we should replace k3 — —ks.
Since expression (42) is an even function of k3, the
same expression for the real part of S}'}" ; still applies
for m; < 0. ,

It should be noted that the real part Re Sle
was previously calculated and analyzed numerically
in Ref. [24]. Tt is given as the Cauchy principal value
of Eq. (9), i.e.,

2,.2,.2
_AmZegry

Re Sﬂ_l = e X

x J]r[oo adz ppy(2lp/10) Je(x)je-1(2)

4 4mzc£r8 2 9 mQQZ'r‘g :
0 +—tx dmj —

(47)

We checked numerically that Eqgs. (42) and (47) yield
identical results, i.e., they present the same quantity
in different forms. Finally, one can easily verify that
the real part Re ZZL , in the limit /, — 0 coincides
with the real part for a point probe found in [19].
Using the obtained analytical formulas for the dy-
namical friction force, we analyse in the next section
the dependence of the dynamical friction force on bo-

son particle mass m.

4. Dependence of Dynamical
Friction Force on Boson Particle Mass

The radial and tangential components of the dimen-
sionless dynamical friction force F given by Eq. (7)
acting on the circularly moving Plummer sphere were
determined numerically in [24] and plotted there as
functions of the Mach number M and dimension-
less orbital radius a = megro/h for different values
of I,,/ro. The Mach number is defined as v/c,, where
v is the absolute value of the velocity of the probe
in ULDM and ¢, is the adiabatic sound speed of DM
superfluid (see for details [27]).

Since the mass of the DM particle m is not fixed in
the ULDM model, we plot in Fig. 2 the dependence
of dimensionless dynamical friction force on the mass
parameter m in the interval 10723-1072! eV for a
typical globular cluster in the Fornax dwarf galaxy
[13] with orbital radius ro = 668 pc and density of
dark matter at this radius ppm = 2 x 107 Mg /kpc?.

As one can see, the dependence of both radial and
tangential components is not monotonic. The dynam-
ical friction force grows with m, attains a maximum,
and then decreases. While both components weakly
depend on m for m > 2 x 10722 eV, they notably

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 11
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Fig. 2. Tangential (a) and radial (b) components of the di-
mensionless dynamical friction force F given by Eq. (7) as a
function of the mass of the dark matter particle m in the inter-
val 107231021 eV at fixed orbital radius rg for a point probe
and the Plummer sphere for a typical globular cluster in the
Fornax dwarf galaxy

decrease as m tends to 10723 eV. Obviously, the dy-
namical friction force for the Plummer sphere differs
more strongly from that for a point probe of the same
mass for larger values of the ratio [, /ro and m.

5. Conclusions

We have studied the force of dynamic friction act-
ing on a spatially extended probe (globular clusters
and dwarf galaxies) moving in galactic ultralight dark
matter in the state of the Bose-Einstein conden-
sate. These objects are often modelled as Plummer
spheres. The dynamical friction force for a Plummer
sphere moving in ultralight dark matter was previ-
ously considered in [24]. Numerically studying the ra-
dial and tangential components of the dynamical fric-
tion force, it is found that the dynamical friction force
for the Plummer sphere deviates from that for a point
probe of the same mass for a sufficiently large ratio
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of the Plummer sphere radius to its orbital radius,
as well as for large values of the Mach number. This
study confirms the relevance of finite-size effects for
the dynamical friction force in the case of globular
clusters and dwarf galaxies.

The radial component of the dynamical friction
force was given in [24] as the Cauchy principal value
of an integral over momentum and is computed only
numerically. In this paper integrating over momen-
tum, we have determined the radial component of
the dynamical friction force in the same form as for
a point probe obtained in [19]. We plotted in Fig. 2
the dependence of the tangential and radial compo-
nents of dimensionless dynamical friction force on
the boson particle mass m in the interval 10723
10~2! eV for a typical globular cluster in the For-
nax dwarf galaxy. We found that the dependence of
both radial and tangential components is not mono-
tonic. In addition, the dynamical friction force for
the Plummer sphere differs more strongly from that
for a point probe with larger values of the ratio
lp/ro and m.

We checked that our analytic expressions for the
radial and tangential components of dynamical fric-
tion force reproduce in the limit of vanishing Plum-
mer sphere radius (I, — 0) the corresponding expres-
sions derived in [19]. Comparing our results numeri-
cally with those in [24] shows their complete agree-
ment with each other. Since the expressions for the
dynamic friction acting on a finite-sized body are
quite complex and their calculation requires numer-
ical methods and a large amount of machine time,
we think that the analytic expressions for dynamic
friction force obtained in this paper can be useful for
practical calculations. In particular, they can be used
in future studies to improve our understanding of the
ULDM impact on the orbital dynamics of extended
astrophysical systems.

We would like to mention also that, unlike dwarf
galaxies, globular clusters in the Milky Way are
typically situated at distances larger than the cen-
tral core of radius around 1 kpc in the state of
the Bose—Einstein condensate of ultralight bosons. At
such distances, quantum wave interference gives rise
to stochastically distributed de-Broglie-scale granu-
lation [28-31], which is phenomenologically described
via a dissipative term in the Gross—Pitaevskii equa-
tion [32], and we plan to study its role in the
future.
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APPENDIX

The residue
ksin(lpuk)

Aw) = pes (0 o) ko)) (A1)

not change if we replace y;y;-1 by jiji—1 + viyi—1, i-e.,
ksin(lpuk) , . .

Au) = res <H(k?) (Ji(kro)ji—1(kro) +

+yz(kro)yz1(k7"o))> (A.2)

because jj(kro)ji—1(kro) is regular at k = 0. We introduce
Qu(@) = ji()ji-1(z) + yi(z)yi—1(z) (A.3)

because unlike y;(z)y;_1(x) the function Q(z) is a polynomial
in inverse powers of x.
Definitions

. 1 d\ sinx
it =t (LY e (A1)
x dx x

1 d\! cosz
yi(z) = —a! (_77) (A.5)

T dx T
imply that
. . Ji—1(x
@) = ~jia (@) + - 2= (A.6)
and a similar relation holds for y;(z). Therefore,

1d
Qi) = *Ed*(Jz (@) + yiq (@) +
-1, 5 2
+—— Ui (@) i (@) =
1d 1
— (3 + ) @ 4 (o). (A7)
Further, we have for j?(z) + y?(z) [33]
l
2n)'(n +1)! 1

Ji (a: = Z 2(1 — p)! g2nt2° (A.8)

n=
Then using (A.8), we find

-1 . |
2n)!(n + 1! 1 (A9)

@) = nZ::O an(n)2(l —n — 1) 220 43"

In view of the Taylor expansions
1 1
(k) ~ (R 452 (k2

—k3)
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1 (1 3 1)_
T4+ k2 \k2 k3 k24s2)

(71)777‘ 2m
T2 +k§ Z <k2m+2 »2m+2 R (A-10)
m=0
(-1 (l u)2s+1 2542
ksin(lpuk) = SZO W , (A.11)
we obtain
2n)!(n +1)!
A - I Sk S NS
== +k:2 it <n2:0m232 (2l —n—1) "

(=D™\ (=1 (pu)>** 1
2mA2 ) 303 (25 4 1)1 kAnmmmo) L ) (&.12)

1
X(2 =t
k3m

Selecting terms which are simple poles in k£ and calculating the
residue, we obtain A(u) given by Eq. (41) in the main text.
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AHAJIITUYHI PO3PAXYHKU
JMHAMIYHOTO TEPTS /11 COEPU
IIJIAMMEPA B HAJIJIETKIM TEMHIN MATEPIT

Busnaueno cuiy JuHAMIYHOrO TEpTs, MIO Ji€ HA HETOYKOBHI
00’eKT (KyJIBOBI CKyIUeHHSI Ta KapJIMKOBI TalaKTUKM), KW
PYXa€TbCs B CEPENOBUIII HAJJIErKOl 6030HHOI TeMHOI MaTepil y

768

craHi 603e—aiHIITAlHIBCLKOTO KOH/eHCATy. MOJeI0Yu HeTo-
4uKOBHIA 00'eKT 5K cdepy Ilmammepa pasiyca lp, Mu 3HaILIH
aHAJIITUYHI BUpa3u I pajiajbHOl Ta TAHT€HI[iaJIbHOI KOMIIO-
HEHT CHJIM JUHaMIi4HOI'O TePTd, fKi B I'DAHHYHOMY BHUIIAJIKY
lp — 0 mepexoznsATe y BiAmOBigHI aHasiTHYHI BUpasn, oTpuMa-
Hi B JliTeparypi st ToukoBoro ob’ekra. [IpoanasnizoBano 3a-
JIEXKHICTh CHJIM TUHAMIYHOIO TepTs Bix Macu GO30HA Ta BCTa-
HOBJIeHO 1i HEMOHOTOHHHME XapakTep B imTepsasi mac 10723

10721 eB.
Katowoei caoea: Hajulerka 60O30HHA TeMHa Marepis, cde-

pa ITmammepa, cuma JUHAMIYHOrO TEPTsI, KYJISICTI CKYIIYICHHS,
KapJIMKOBi TalaKTHKH.
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