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ANALYTIC CALCULATION
OF DYNAMICAL FRICTION FOR PLUMMER
SPHERE IN ULTRALIGHT DARK MATTER

The dynamical friction force acting on a spatially extended probe (globular clusters and dwarf
galaxies) moving in the environment of ultralight bosonic dark matter in the state of the Bose–
Einstein condensate is determined. Modelling the probe as a 𝑟 sphere of radius 𝑙𝑝, the radial
and tangential components of the dynamic friction force are found in an analytic form, which
reduces in the limit 𝑙𝑝 → 0 to the corresponding analytic expressions obtained in the literature
in the case of a point probe. The dependence of dynamical friction force on boson particle mass
was analyzed and found to be non-monotonous in the interval 10−23÷10−21 eV.
K e yw o r d s: ultralight bosonic dark matter, Plummer sphere, dynamical friction force, glob-
ular clusters, dwarf galaxies.

1. Introduction
Dynamical friction acting on objects moving through
a galactic environment is an important and ex-
tensively studied phenomenon. It was first studied
by Chandrasekhar [1] who analysed the gravita-
tional drag on a moving star due to the fluctuat-
ing gravitational field of neighboring stars. Later this
study was extended to the case of gaseous medium
in [2–6].

Recently, models of ultralight dark matter (ULDM)
with particle masses in the range 10−23–10−21eV have
attracted significant attention due to their intriguing
phenomenology (for a review, see Refs. [7–10]). These
models successfully reproduce the large-scale struc-
ture of the Universe like cold dark matter (CDM)
models and avoid some problems at the small scale
faced by CDM. A distinctive feature of ULDM is the
formation of the Bose–Einstein condensate (BEC) of
ultralight bosons at galactic centers [11].
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As to the dynamical friction acting on moving ob-
jects in the ULDM environment, it has been studied
for point probes in the case of fuzzy ULDM when the
dark matter self-interaction is absent [12–15]. Still, it
has been found that even rather weak ULDM self-
interaction can notably modify the frictional force af-
fecting stellar motion [16–19]. On larger scales, dy-
namical friction also plays an important role for mo-
tion and the evolution of more massive and spatially
extended astrophysical objects such as globular clus-
ters and dwarf galaxies. Since dynamical friction is
proportional to the square of the moving object’s
mass, its influence on globular clusters can be con-
siderably stronger compared to the case of individual
stars [20].

Globular clusters are often modeled (as well as
sometimes dwarf galaxies) using the density profile of
the Plummer sphere [21]. Since the de Broglie wave-
length of dark matter particles composing ULDM can
be significantly larger than the interstellar distances
within a globular cluster, the dynamical friction effect
is not simply the sum of individual stellar dynamical
friction forces [13, 22]. We would like to mention also
that the sizes of globular clusters (up to 10 pc) are
much smaller than the de Broglie wavelength of the
ULDM (approximately equal or larger 300 pc). Nu-
merical studies have shown that for extended objects
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like globular clusters, the frictional force is weaker
than for point probes of the same total mass, poten-
tially alleviating the Fornax timing problem [17, 23].

In dwarf galaxies, like Fornax, globular clusters are
inside the soliton core of ULDM in the BEC state.
This motivates us to analyse in the present paper the
dynamical friction force acting on a moving Plummer
sphere in the environment of the BEC of ultralight
bosonic dark matter.

Previously, the dynamical friction force acting on
a circularly moving object (modelled as the Plum-
mer sphere) in the BEC soliton core was determined
in [24]. While the expression for the tangential force
was obtained in an analytical form convenient for cal-
culations, the radial component of the dynamical fric-
tion force was given as the Cauchy principal value of
an integral over momentum and was computed only
numerically. In this paper, we aim to integrate over
momentum and obtain the radial component of the
dynamical friction force in the same analytic form as
it was derived for a point probe in [19].

The paper is organized as follows. The dynamical
friction for circularly moving Plummer sphere in the
linear response approach is presented in Sec. 2. Ana-
lytic calculation of the imaginary and real compo-
nents of this force is given in Sec. 3. The dependence
of dynamical friction force on boson particle mass 𝑚
is analyzed in Sec. 4. Conclusions are drawn in Sec. 5.

2. Dynamical Friction Force
for Circularly Moving Plummer Sphere

In this section, we determine the dynamical friction
force acting on a Plummer sphere, which moves on
a circular orbit of radius 𝑟0 in ultralight dark matter
composed of ultralight bosonic particles of mass 𝑚
with constant angular velocity Ω in the steady-state
regime.

Let us consider a Plummer sphere of radius 𝑙𝑝 and
total mass 𝑀 , whose mass density profile is given by

𝜌Pl(r) =
3𝑀

4𝜋𝑙3𝑝

1(︁
1 + 𝑟2

𝑙2𝑝

)︁5/2 . (1)

This density profile is approximately constant for 𝑟 <
< 𝑙𝑝 and quickly decreases as ∼ 1/𝑟5 for 𝑟 > 𝑙𝑝. Using
[25], we easily find the following Fourier transform of
the Plummer sphere mass density:

𝜌Pl(k) = 𝑀𝑘𝑙𝑝 𝐾1(𝑘𝑙𝑝) ≡ 𝜌Pl(𝑘𝑙𝑝), (2)

where 𝐾1(𝑥) is the modified Bessel function of the
second kind. Since 𝐾1(𝑥) → 1/𝑥 as 𝑥 → 0, we
find that 𝜌Pl(𝑘𝑙𝑝) → 𝑀 for 𝑙𝑝 → 0. As expected,
this means that the mass density profile of Plummer
sphere in momentum space tends to the mass density
profile of a point probe given by 𝜌𝑝(k) = 𝑀 .

To analyze the dynamical friction force, we follow
the setup developed in [18, 26] and set the density
of unperturbed ULDM to a constant value 𝜌0. Then,
moving Plummer sphere perturbs due to gravita-
tional interaction the ULDM density 𝜌DM(𝑡, r) =
= 𝜌0(1 + 𝛼(𝑡, r)). Using the results of [26] for self-
interacting ULDM and generalizing the correspond-
ing analysis to the case under consideration, we ob-
tain that the ULDM density inhomogeneity 𝛼(𝑡, r) is
governed by the following equation in the linear re-
sponse approach:

𝜕2
𝑡 𝛼− 𝑐2𝑠∇2

r𝛼+
∇4

r𝛼

4𝑚2
= 4𝜋𝐺𝜌Pl(r− rCM(𝑡)). (3)

Here, 𝑐𝑠 is the adiabatic sound velocity of DM super-
fluid which is given by the first derivative of pressure
with respect to density [10]

𝑐𝑠 =

√
𝑔𝜌DM

𝑚
, (4)

where 𝜌DM is the DM density, 𝑔 is the coupling con-
stant of the DM self-interaction and 𝑚 is mass of
the DM particle. Since pressure is proportional to
𝑔, sound velocity 𝑐𝑠 vanishes in fuzzy dark matter
where 𝑔 = 0. Radius-vector rCM(𝑡) denotes the po-
sition of the center of mass of the moving Plummer
sphere. The total dynamical friction force acting on
the moving Plummer sphere (see, for more detailed
consideration [24]) is given by

Ffr(𝑡) = (4𝜋𝐺)2𝜌0

+∞∫︁
0

𝑑𝜏

∫︁
𝑑𝜔𝑑3𝑘

(2𝜋)4
𝑖k

k2
×

× 𝜌Pl(−k)𝜌Pl(k) 𝑒
−𝑖𝜔𝜏+𝑖krCM(𝑡)−𝑖krCM(𝑡−𝜏)

−(𝜔 + 𝑖𝜖)2 + 𝑐2𝑠k
2 + k4

4𝑚2

. (5)

Since 𝜌Pl(k) depends only on the absolute value
of momentum 𝑘, the subsequent integration 𝑑3𝑘 =
= 𝑘2𝑑𝑘𝑑Ω𝑘 over Ω𝑘 proceeds as in [19] and we obtain
the following total dynamical friction force acting on
the circularly moving Plummer sphere:

Ffr(𝑡) = −4𝜋𝐺2𝑀2𝜌0
𝑐2𝑠

ℱ , (6)
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where ℱ is dimensionless force whose nonzero radial
and tangential components equal

ℱ =

ℓmax∑︁
ℓ=1

ℓ−2∑︁
𝑚𝑙=−ℓ

𝛾ℓ𝑚𝑙

{︂
Re
(︁
𝑆𝑚𝑙

ℓ,ℓ−1 − 𝑆𝑚𝑙+1
ℓ,ℓ−1

*)︁
𝑟 +

+ Im
(︁
𝑆𝑚𝑙

ℓ,ℓ−1 − 𝑆𝑚𝑙+1
ℓ,ℓ−1

*)︁
𝜙

}︂
. (7)

Here

𝛾ℓ𝑚𝑙
= (−1)𝑚𝑙

(ℓ−𝑚𝑙)!

(ℓ−𝑚𝑙 − 2)!
×

×
{︂
Γ

(︂
1− ℓ−𝑚𝑙

2

)︂
Γ

(︂
1 +

ℓ−𝑚𝑙

2

)︂
×

×Γ

(︂
3− ℓ+𝑚𝑙

2

)︂
Γ

(︂
1 +

ℓ+𝑚𝑙

2

)︂}︂−1

. (8)

and the key quantity which defines the dynamical fric-
tion force is

𝑆𝑚𝑙

ℓ,ℓ−1 =
𝑐2𝑠
𝑀2

+∞∫︁
0

𝑘𝑑𝑘 𝜌2Pl(𝑘𝑙𝑝) 𝑗ℓ(𝑘𝑟0)𝑗ℓ−1(𝑘𝑟0)

𝑐2𝑠𝑘
2 + 𝑘4

4𝑚2 − (𝑚𝑙Ω+ 𝑖𝜖)2
, (9)

where 𝜖 → +0, ℓ and 𝑚𝑙 are the azimuthal and
quantum numbers, respectively, 𝑗ℓ(𝑥) is the spherical
Bessel function. In the case of a point probe where
𝜌Pl(𝑘𝑙𝑝) → 𝑀 , the integral over 𝑘 in Eq.(9) was cal-
culated analytically in [19]. In the next section, we
calculate this integral for 𝜌Pl(𝑘𝑙𝑝) and find the an-
alytic expressions for the real and imaginary parts
of 𝑆𝑚𝑙

ℓ,ℓ−1.

3. Analytic Calculation of 𝑆𝑚𝑙

ℓ,ℓ1

Representing the function 𝜌Pl(𝑘𝑙𝑝) in the integral
form

𝜌Pl(𝑘𝑙𝑝) = 𝑀

∞∫︁
0

cos(𝑘𝑙𝑝𝑥)

(1 + 𝑥2)3/2
𝑑𝑥 (10)

and taking into account that the integrand is an even
function of 𝑥, we obtain

𝜌2Pl(𝑘𝑙𝑝) =
𝑀2

4

∞∫︁
0

𝑑 𝑢

∞∫︁
0

𝑑 𝑣×

× 𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

(1 + 1
4 (𝑢+ 𝑣)2)3/2(1 + 1

4 (𝑢− 𝑣)2)3/2
=

=
𝑀2

4
𝜂(𝑘𝑙𝑝), (11)

where 𝑢 = 𝑥+ 𝑦, 𝑣 = 𝑥− 𝑦, and

𝜂(𝑘𝑙𝑝) =

∞∫︁
0

∞∫︁
0

𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

𝑓(𝑢, 𝑣)
𝑑 𝑢𝑑 𝑣, (12)

𝑓(𝑢, 𝑣) =

(︂
1 +

1

4
(𝑢+ 𝑣)2

)︂3/2(︂
1 +

1

4
(𝑢− 𝑣)2

)︂3/2
. (13)

The spherical Bessel functions 𝑗𝑙(𝑥) can be ex-
pressed through the spherical Hankel functions
ℎ
(1,2)
𝑙 (𝑥)

𝑗𝑙(𝑥) =
1

2

(︁
ℎ
(1)
𝑙 (𝑥) + ℎ

(2)
𝑙 (𝑥)

)︁
. (14)

Further, it is convenient to split the product
𝑗𝑙(𝑥)𝑗𝑙−1(𝑥) into two components, which include as
a factor only one exponential function 𝑒2𝑖𝑥 or 𝑒−2𝑖𝑥,
see for details, e.g., [25],

4𝑗𝑙(𝑥)𝑗𝑙−1(𝑥) = ℎ
(1)
𝑙 (𝑥)ℎ

(1)
𝑙−1(𝑥) + ℎ

(1)
𝑙 (𝑥)ℎ

(2)
𝑙−1(𝑥)⏟  ⏞  

𝑔1(𝑥)

+

+ ℎ
(2)
𝑙 (𝑥)ℎ

(2)
𝑙−1(𝑥) + ℎ

(2)
𝑙 (𝑥)ℎ

(1)
𝑙−1(𝑥)⏟  ⏞  

𝑔2(𝑥)

= 𝑔1(𝑥) + 𝑔2(𝑥),

(15)

where

𝑔1(𝑥) = 𝑎1(𝑥) + 𝑖𝑏1(𝑥) + (𝑎2(𝑥)− 𝑖𝑏2(𝑥))𝑒
2𝑖𝑥,

𝑔2(𝑥) = 𝑎1(𝑥)− 𝑖𝑏1(𝑥) + (𝑎2(𝑥) + 𝑖𝑏2(𝑥))𝑒
−2𝑖𝑥,

𝑔1(−𝑥) = −𝑔2(𝑥).

(16)

Here 𝑎𝑖(𝑥), 𝑏𝑖(𝑥) are polynomials in inverse powers
of 𝑥. Then Eq. (9) takes the form

𝑆𝑚𝑙

𝑙,𝑙−1=
𝑐2𝑠𝑚

2

8

∞∫︁
−∞

𝑘𝜂(𝑘𝑙𝑝)

Π(𝑘2)
(𝑔1(𝑘𝑟0) + 𝑔2(𝑘𝑟0))𝑑𝑘, (17)

where Π(𝑘2) = (𝑘2 + κ2)(𝑘2 − 𝑘23) and we used

4𝑚2𝑐2𝑠𝑘
2 + 𝑘4 − 4𝑚2𝑚2

𝑙Ω
2 =

= (𝑘 + 𝑖κ)(𝑘 − 𝑖κ)(𝑘 − 𝑘3)(𝑘 + 𝑘3) (18)
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a

b
Fig. 1. Poles of the integrand in 𝐽 in the complex plane 𝑘 for
𝑚𝑙 > 0 (a) and 𝑚𝑙 < 0 (b)

with

κ =
√
2𝑚𝑐𝑠

(︃√︃
1 +

𝑚2
𝑙Ω

2

𝑚2𝑐4𝑠
+ 1

)︃1/2
, (19)

𝑘3 =
√
2𝑚𝑐𝑠

(︃√︃
1 +

𝑚2
𝑙Ω

2

𝑚2𝑐4𝑠
− 1

)︃1/2
. (20)

The function 𝜂(𝑘𝑙𝑝) is defined in Eq. (11) and has the
structure

𝜂(𝑘𝑙𝑝) =

∞∫︁
0

∞∫︁
0

𝑑 𝑢𝑑 𝑣

𝑓(𝑢, 𝑣)
(𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘).

Note that the functions 𝑘𝑔1(𝑘𝑟0) and 𝑘𝑔2(𝑘𝑟0) have
only one simple pole at 𝑘 = 0. Hence, we can split
the integral in Eq. (17) into two integrals

𝑆𝑚𝑙

𝑙,𝑙−1 =
𝑐2𝑠𝑚

2

8
−
∞∫︁

−∞

𝑘𝜂(𝑘𝑙𝑝)

Π(𝑘2)
𝑔1(𝑘𝑟0)𝑑𝑘+

+
𝑐2𝑠𝑚

2

8
−
∞∫︁

−∞

𝑘𝜂(𝑘𝑙𝑝)

Π(𝑘2)
𝑔2(𝑘𝑟0)𝑑𝑘 = 𝑆1 + 𝑆2, (21)

which converge in the sense of the Cauchy principal
value (which is denoted by the sign

∫︀
−).

By replacing 𝑘 → −𝑘 in the second integral 𝑆2 and
taking into account that 𝑔2(−𝑘) = −𝑔1(𝑘), we find

that 𝑆2 = 𝑆1. Therefore,

𝑆𝑚𝑙

𝑙,𝑙−1 = 2𝑆1 =
𝑐2𝑠𝑚

2

4

∞∫︁
0

∞∫︁
0

𝑑𝑢 𝑑𝑣

𝑓(𝑢, 𝑣)
×

× −
∞∫︁

−∞

𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0) 𝑑𝑘

⏟  ⏞  
𝐽

. (22)

For 𝐽 , we have

𝐽 =

∫︁
𝐶

𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0) 𝑑𝑘+

+ 𝑖𝜋 res
𝑘=0

(︂
𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0)

)︂
, (23)

where the contour 𝐶 corresponds to the integra-
tion from −∞ to +∞ along the real axis 𝑘 and
passing around the point 𝑘 = 0 in the upper half-
plane. Further,∫︁
𝐶

𝑒𝑖𝑙𝑝𝑢𝑘 + 𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0) 𝑑𝑘 =

=

∫︁
𝐶

𝑒𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0) 𝑑𝑘 +

∫︁
𝐶

𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
𝑘𝑔1(𝑘𝑟0) 𝑑𝑘 =

= 𝐽1 + 𝐽2. (24)

To calculate the integral 𝐽1, we close the contour in
the upper half-plane and apply the Cauchy formula.
We begin with the case 𝑚𝑙 > 0. In the upper half-
plane, we have two simple poles at 𝑘 = 𝑘3 and 𝑘 = 𝑖κ,
see Fig. 1. We find

𝐽1 =
𝜋𝑖

κ2 + 𝑘23

(︁
− 𝑒−κ𝑙𝑝𝑢𝑔1(𝑖κ𝑟0) + 𝑒𝑖𝑙𝑝𝑢𝑘3𝑔1(𝑘3𝑟0)

)︁
.

(25)

To calculate 𝐽2, we should consider two cases with
𝑙𝑝𝑢 > 2𝑟0 and 𝑙𝑝𝑢 < 2𝑟0. We have

𝐽2 =

∫︁
𝐶

𝑘𝑒−𝑖𝑙𝑝𝑢𝑘𝑔1(𝑘𝑟0)

Π(𝑘2)
𝑑𝑘 =

=

∫︁
𝐶

𝑘𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
(𝑎1 + 𝑖𝑏1⏟  ⏞  
ℎ
(1)
𝑙 ℎ

(2)
𝑙−1

+(𝑎2 − 𝑖𝑏2)𝑒
2𝑖𝑘𝑟0⏟  ⏞  

ℎ
(1)
𝑙 ℎ

(1)
𝑙−1

) 𝑑𝑘. (26)

762 ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 11



Analytic Calculation of Dynamical Friction for Plummer Sphere

Case 𝑙𝑝𝑢 > 2𝑟0. Closing the contour in the lower
half-plane and applying the Cauchy formula, we find

𝐽2 =
𝜋𝑖

κ2 + 𝑘23

(︀
−𝑒−κ𝑙𝑝𝑢𝑔2(𝑖κ𝑟0) + 𝑒𝑖𝑙𝑝𝑢𝑘3𝑔2(𝑘3𝑟0)

)︀
−

− 2𝜋𝑖 res
𝑘=0

(︂
𝑘𝑔1(𝑘𝑟0)𝑒

−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)

)︂
, (27)

where the last term is due to the pole at 𝑘 = 0 and
we took into account that 𝑔1(−𝑧) = −𝑔2(𝑧).

Case 𝑙𝑝𝑢 < 2𝑟0. Now for the part ℎ
(1)
𝑙 ℎ

(2)
𝑙−1 we need

to close the contour in the lower half-plane, and for
the part with ℎ

(1)
𝑙 ℎ

(1)
𝑙−1 we need to close the contour

in the upper half-plane. We obtain

𝐽2 =

∫︁
𝐶

𝑘𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)
×

×
[︁
ℎ
(1)
𝑙 (𝑘𝑟0)ℎ

(2)
𝑙−1(𝑘𝑟0) + ℎ

(1)
𝑙 (𝑘𝑟0)ℎ

(1)
𝑙−1(𝑘𝑟0)

]︁
𝑑𝑘 =

=
𝜋𝑖

κ2 + 𝑘23

(︁
− 𝑒−κ𝑙𝑝𝑢ℎ

(2)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ 𝑒𝑖𝑙𝑝𝑢𝑘3ℎ
(2)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0)

)︁
−

− 2𝜋𝑖 res
𝑘=0

(︃
𝑘 ℎ

(1)
𝑙 (𝑘𝑟0)ℎ

(2)
𝑙−1(𝑘𝑟0)𝑒

−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2)

)︃
+

+
𝜋𝑖

κ2 + 𝑘23

(︁
− 𝑒κ𝑙𝑝𝑢ℎ

(1)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ 𝑒−𝑖𝑙𝑝𝑢𝑘3ℎ
(1)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0)

)︁
. (28)

Thus, we have the following results for 𝐽 = 𝐽1+𝐽2+

𝑖𝜋 res
𝑘=0

(︁
𝑒𝑖𝑙𝑝𝑢𝑘+𝑒−𝑖𝑙𝑝𝑢𝑘

Π(𝑘2) 𝑘𝑔1(𝑘𝑟0)
)︁
.

(i) Case 𝑙𝑝𝑢 > 2𝑟0. The integral 𝐽 equals

𝐽 =
4𝜋𝑖

κ2 + 𝑘23

(︁
− 𝑒−κ𝑙𝑝𝑢𝑗𝑙(𝑖κ𝑟0)𝑗𝑙−1(𝑖κ𝑟0)+

+ 𝑒𝑖𝑙𝑝𝑢𝑘3𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0)
)︁
. (29)

The residue term

−2𝜋 res
𝑘=0

(︂
𝑘𝑔1(𝑘𝑟0) sin(𝑙𝑝𝑢𝑘)

Π(𝑘2)

)︂
(30)

vanishes because numerator is regular at 𝑘 = 0.
(ii) Case 𝑙𝑝𝑢 < 2𝑟0. We have

𝐽 =
𝑖𝜋

κ2 + 𝑘23

(︁
− 𝑒−κ𝑙𝑝𝑢(ℎ

(1)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(2)

𝑙−1(𝑖κ𝑟0) + ℎ
(2)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)
)︁
−

− 𝑒κ𝑙𝑝𝑢ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ 𝑒−𝑖𝑙𝑝𝑢𝑘3ℎ
(1)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0)+

+ 𝑒𝑖𝑙𝑝𝑢𝑘3

(︁
ℎ
(1)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0)+ℎ

(1)
𝑙 (𝑘3𝑟0)ℎ

(2)
𝑙−1(𝑘3𝑟0)+

+ℎ
(2)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0))

)︁
+

+2𝜋𝑖 res
𝑘=0

(︃
𝑘ℎ

(1)
𝑙 (𝑘𝑟0)

Π(𝑘2)

(︀
𝑒𝑖𝑙𝑝𝑢𝑘𝑗𝑙−1(𝑘𝑟0)+

+ 𝑖𝑒−𝑖𝑙𝑝𝑢𝑘𝑦𝑙−1(𝑘𝑟0)
)︀)︃
, (31)

where 𝑦𝑙(𝑥) = (ℎ
(1)
𝑙 (𝑥)− 𝑖ℎ

(2)
𝑙 (𝑥))/2𝑖 is the spherical

Neumann function.
For the imaginary part of 𝐽 , we obtain

Im 𝐽 =
4𝜋

κ2 + 𝑘23
𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0) cos(𝑙𝑝𝑢𝑘3), (32)

where 𝑙𝑝𝑢 > 2𝑟0 and

Im 𝐽 =
4𝜋

κ2 + 𝑘23
𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0) cos(𝑙𝑝𝑢𝑘3)−

− 2𝜋 res
𝑘=0

(︂
𝑘 cos(𝑙𝑝𝑢𝑘)

Π(𝑘2)
𝑦𝑙𝑦𝑙−1(𝑘𝑟0)

)︂
, (33)

for 𝑙𝑝𝑢 < 2𝑟0. The residue term in Eq. (33) is zero as
it is the residue of an even function of 𝑘. Therefore,
for the imaginary part of 𝑆𝑚𝑙

𝑙,𝑙−1, we find the following
expression:

Im𝑆𝑚𝑙

𝑙,𝑙−1 =
𝜋𝑐2𝑠𝑚

2𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0)

κ2 + 𝑘23
×

×
∞∫︁
0

∞∫︁
0

cos(𝑙𝑝𝑢𝑘)

𝑓(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 =

=
2𝜋𝑐2𝑠𝑚

2𝜌2Pl(𝑘3𝑙𝑝)𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0)

𝑀2(κ2 + 𝑘23)
, (34)

which exactly coincides with the result previously ob-
tained in [24]. In addition, taking the limit of vanish-
ing Plummer sphere radius (𝑙𝑝 → 0) and using that
𝜌Pl(𝑥) → 𝑀 as 𝑥 → 0, this expression completely
agrees with the imaginary part found in [19] in the
case of a point probe.
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Let us proceed to the real part of 𝑆𝑚𝑙

𝑙,𝑙−1 and begin
with the real part of 𝐽 . We have

ℜe 𝐽 = − 4𝜋

κ2 + 𝑘23

(︁
𝑖𝑒−κ𝑙𝑝𝑢𝑗𝑙(𝑖κ𝑟0)𝑗𝑙−1(𝑖κ𝑟0)+

+ 𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0) sin(𝑙𝑝𝑢𝑘3)
)︁

(35)

for 𝑙𝑝𝑢 > 2𝑟0 and

ℜe 𝐽 =
𝜋

κ2 + 𝑘23

(︁
− 𝑖𝑒−κ𝑙𝑝𝑢(2𝑗𝑙(𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(2)

𝑙−1(𝑖κ𝑟0))−𝑒κ𝑙𝑝𝑢ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)−

− sin(𝑙𝑝𝑢𝑘3)(ℎ
(1)
𝑙 (𝑘3𝑟0)ℎ

(2)
𝑙−1(𝑘3𝑟0)+

+ℎ
(2)
𝑙 (𝑘3𝑟0)ℎ

(1)
𝑙−1(𝑘3𝑟0))−

− 2 cos(𝑙𝑝𝑢𝑘3)(𝑗𝑙(𝑘3𝑟0)𝑦𝑙−1(𝑘3𝑟0)+

+ 𝑦𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0))
)︁
− 2𝜋

κ2𝑘23𝑟
2
0

−

− 2𝜋 res
𝑘=0

(︂
𝑘

Π(𝑘2)
𝑦𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0) sin(𝑙𝑝𝑢𝑘)

)︂
(36)

for 𝑙𝑝𝑢 < 2𝑟0. The last two terms in (36) are due to
the residue term in expression (31)

𝑖 res
𝑘=0

(︃
𝑘ℎ

(1)
𝑙

Π(𝑘2)

(︀
𝑒𝑖𝑙𝑝𝑢𝑘𝑗𝑙−1(𝑘𝑟0) + 𝑖𝑒−𝑖𝑙𝑝𝑢𝑘𝑦𝑙−1(𝑘𝑟0)

)︀)︃
=

= −res
𝑘=0

(︂
𝑘

Π(𝑘2)

(︀
sin(𝑙𝑝𝑢𝑘)𝑗𝑙(𝑘𝑟0)𝑗𝑙−1(𝑘𝑟0)+

+ cos (𝑙𝑝𝑢𝑘)𝑗𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0)+

+ sin (𝑙𝑝𝑢𝑘)𝑦𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0)+

+ cos (𝑙𝑝𝑢𝑘)𝑦𝑙(𝑘𝑟0)𝑗𝑙−1(𝑘𝑟0)
)︀)︂
, (37)

where we took into account that the residue of an
even function at the zero value of its argument van-
ishes. The first two terms are regular at zero, and
therefore, their contribution is zero. The last term
has a simple pole at zero and can be easily calculated
using the asymptotics

𝑗𝑙−1(𝑥) =
𝑥𝑙−1

(2𝑙 − 1)!!
+𝑂(𝑥𝑙+1), (38)

𝑦𝑙(𝑥) = − (2𝑙 − 1)!!

𝑥𝑙+1
+𝑂(𝑥𝑙−1). (39)

We find

res
𝑘=0

(︂
cos(𝑙𝑝𝑢𝑘)

Π(𝑘2)
𝑘𝑦𝑙(𝑘𝑟0)𝑗𝑙−1(𝑘𝑟0)

)︂
=

1

κ2𝑘23𝑟
2
0

. (40)

As to the residue term in Eq. (36), it equals

Δ(𝑢) = res
𝑘=0

(︂
𝑘 sin(𝑙𝑝𝑢𝑘)

Π(𝑘2)
𝑦𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0)

)︂
=

=
1

κ2 + 𝑘23

𝑙−1∑︁
𝑛=0

(2𝑛)!(𝑙 + 𝑛)!

4𝑛(𝑛!)2(𝑙 − 𝑛− 1)!
×

×
𝑛∑︁

𝑚=0

(︂
1

𝑘2𝑚+2
3

+
(−1)𝑚

κ2𝑚+2

)︂
(−1)𝑛−𝑚(𝑙𝑝𝑢)

2(𝑛−𝑚)+1

𝑟2𝑛+3
0 (2𝑛− 2𝑚+ 1)!

,

(41)
with details of its calculation given in Appendix.

Finally, using Eqs. (35), (36), and (37), we obtain
the following real part of 𝑆𝑚𝑙

𝑙,𝑙−1 for 𝑚𝑙 > 0:

ℜe𝑆𝑚𝑙

𝑙,𝑙−1 =
𝜋𝑐2𝑠𝑚

2

κ2 + 𝑘23

(︂
− 𝑖𝑅1𝑗𝑙(𝑖κ𝑟0)𝑗𝑙−1(𝑖κ𝑟0)−

−𝑅2𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0)−
𝑄2

2
(𝑦𝑙(𝑘3𝑟0)𝑦𝑙−1(𝑘3𝑟0)+

+ 𝑗𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0))−
𝑄3

2
(𝑗𝑙(𝑘3𝑟0)𝑦𝑙−1(𝑘3𝑟0)+

+ 𝑦𝑙(𝑘3𝑟0)𝑗𝑙−1(𝑘3𝑟0))−
𝑖𝑄−

1

4
(2𝑗𝑙(𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)+

+ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(2)

𝑙−1(𝑖κ𝑟0))−
𝑖𝑄+

1

4
ℎ
(1)
𝑙 (𝑖κ𝑟0)ℎ(1)

𝑙−1(𝑖κ𝑟0)
)︂

− 𝜋𝑐2𝑠𝑚
2

2κ2𝑘23𝑟
2
0

𝑄4 −
𝜋𝑚2𝑐2𝑠

2
𝑄5, (42)

where

𝑅1=

∞∫︁
2𝑟0
𝑙𝑝

𝑑𝑢

∞∫︁
0

𝑒−κ𝑙𝑝𝑢

𝑓(𝑢, 𝑣)
𝑑𝑣, 𝑅2=

∞∫︁
2𝑟0
𝑙𝑝

𝑑𝑢

∞∫︁
0

sin(𝑘3𝑙𝑝𝑢)

𝑓(𝑢, 𝑣)
𝑑𝑣,

(43)

𝑄±
1 =

2𝑟0
𝑙𝑝∫︁
0

𝑑𝑢

∞∫︁
0

𝑒±κ𝑙𝑝𝑢

𝑓(𝑢, 𝑣)
𝑑𝑣, 𝑄2=

2𝑟0
𝑙𝑝∫︁
0

𝑑𝑢

∞∫︁
0

sin(𝑘3𝑙𝑝𝑢)

𝑓(𝑢, 𝑣)
𝑑𝑣,

(44)

𝑄3=

2𝑟0
𝑙𝑝∫︁
0

𝑑𝑢

∞∫︁
0

cos(𝑘3𝑙𝑝𝑢)

𝑓(𝑢, 𝑣)
𝑑𝑣, 𝑄4=

2𝑟0
𝑙𝑝∫︁
0

𝑑𝑢

∞∫︁
0

𝑑𝑣

𝑓(𝑢, 𝑣)
,

(45)

𝑄5 =

2𝑟0
𝑙𝑝∫︁
0

𝑑𝑢

∞∫︁
0

Δ(𝑢)𝑑𝑣

𝑓(𝑢, 𝑣)
. (46)
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In the case 𝑚𝑙 < 0, we should replace 𝑘3 → −𝑘3.
Since expression (42) is an even function of 𝑘3, the
same expression for the real part of 𝑆𝑚𝑙

𝑙,𝑙−1 still applies
for 𝑚𝑙 < 0.

It should be noted that the real part ℜe𝑆𝑚𝑙

𝑙,𝑙−1

was previously calculated and analyzed numerically
in Ref. [24]. It is given as the Cauchy principal value
of Eq. (9), i.e.,

ℜe 𝑆𝑚𝑙

ℓ,ℓ−1 =
4𝑚2𝑐2𝑠𝑟

2
0

~2𝑀2
×

× −
+∞∫︁
0

𝑥𝑑𝑥 𝜌2Pl(𝑥𝑙𝑝/𝑟0) 𝑗ℓ(𝑥)𝑗ℓ−1(𝑥)

𝑥4 +
4𝑚2𝑐2𝑠𝑟

2
0

~2 𝑥2 − 4𝑚2
𝑙

𝑚2Ω2𝑟40
~2

. (47)

We checked numerically that Eqs. (42) and (47) yield
identical results, i.e., they present the same quantity
in different forms. Finally, one can easily verify that
the real part ℜe𝑆𝑚𝑙

𝑙,𝑙−1 in the limit 𝑙𝑝 → 0 coincides
with the real part for a point probe found in [19].

Using the obtained analytical formulas for the dy-
namical friction force, we analyse in the next section
the dependence of the dynamical friction force on bo-
son particle mass 𝑚.

4. Dependence of Dynamical
Friction Force on Boson Particle Mass

The radial and tangential components of the dimen-
sionless dynamical friction force ℱ given by Eq. (7)
acting on the circularly moving Plummer sphere were
determined numerically in [24] and plotted there as
functions of the Mach number ℳ and dimension-
less orbital radius 𝑎 = 𝑚𝑐𝑠𝑟0/~ for different values
of 𝑙𝑝/𝑟0. The Mach number is defined as 𝑣/𝑐𝑠, where
𝑣 is the absolute value of the velocity of the probe
in ULDM and 𝑐𝑠 is the adiabatic sound speed of DM
superfluid (see for details [27]).

Since the mass of the DM particle 𝑚 is not fixed in
the ULDM model, we plot in Fig. 2 the dependence
of dimensionless dynamical friction force on the mass
parameter 𝑚 in the interval 10−23–10−21 eV for a
typical globular cluster in the Fornax dwarf galaxy
[13] with orbital radius 𝑟0 = 668 pc and density of
dark matter at this radius 𝜌DM = 2× 107 M⊙/kpc3.

As one can see, the dependence of both radial and
tangential components is not monotonic. The dynam-
ical friction force grows with 𝑚, attains a maximum,
and then decreases. While both components weakly
depend on 𝑚 for 𝑚 & 2 × 10−22 eV, they notably

a

b
Fig. 2. Tangential (a) and radial (b) components of the di-
mensionless dynamical friction force ℱ given by Eq. (7) as a
function of the mass of the dark matter particle 𝑚 in the inter-
val 10−23–10−21 eV at fixed orbital radius 𝑟0 for a point probe
and the Plummer sphere for a typical globular cluster in the
Fornax dwarf galaxy

decrease as 𝑚 tends to 10−23 eV. Obviously, the dy-
namical friction force for the Plummer sphere differs
more strongly from that for a point probe of the same
mass for larger values of the ratio 𝑙𝑝/𝑟0 and 𝑚.

5. Conclusions

We have studied the force of dynamic friction act-
ing on a spatially extended probe (globular clusters
and dwarf galaxies) moving in galactic ultralight dark
matter in the state of the Bose–Einstein conden-
sate. These objects are often modelled as Plummer
spheres. The dynamical friction force for a Plummer
sphere moving in ultralight dark matter was previ-
ously considered in [24]. Numerically studying the ra-
dial and tangential components of the dynamical fric-
tion force, it is found that the dynamical friction force
for the Plummer sphere deviates from that for a point
probe of the same mass for a sufficiently large ratio
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of the Plummer sphere radius to its orbital radius,
as well as for large values of the Mach number. This
study confirms the relevance of finite-size effects for
the dynamical friction force in the case of globular
clusters and dwarf galaxies.

The radial component of the dynamical friction
force was given in [24] as the Cauchy principal value
of an integral over momentum and is computed only
numerically. In this paper integrating over momen-
tum, we have determined the radial component of
the dynamical friction force in the same form as for
a point probe obtained in [19]. We plotted in Fig. 2
the dependence of the tangential and radial compo-
nents of dimensionless dynamical friction force on
the boson particle mass 𝑚 in the interval 10−23–
10−21 eV for a typical globular cluster in the For-
nax dwarf galaxy. We found that the dependence of
both radial and tangential components is not mono-
tonic. In addition, the dynamical friction force for
the Plummer sphere differs more strongly from that
for a point probe with larger values of the ratio
𝑙𝑝/𝑟0 and 𝑚.

We checked that our analytic expressions for the
radial and tangential components of dynamical fric-
tion force reproduce in the limit of vanishing Plum-
mer sphere radius (𝑙𝑝 → 0) the corresponding expres-
sions derived in [19]. Comparing our results numeri-
cally with those in [24] shows their complete agree-
ment with each other. Since the expressions for the
dynamic friction acting on a finite-sized body are
quite complex and their calculation requires numer-
ical methods and a large amount of machine time,
we think that the analytic expressions for dynamic
friction force obtained in this paper can be useful for
practical calculations. In particular, they can be used
in future studies to improve our understanding of the
ULDM impact on the orbital dynamics of extended
astrophysical systems.

We would like to mention also that, unlike dwarf
galaxies, globular clusters in the Milky Way are
typically situated at distances larger than the cen-
tral core of radius around 1 kpc in the state of
the Bose–Einstein condensate of ultralight bosons. At
such distances, quantum wave interference gives rise
to stochastically distributed de-Broglie-scale granu-
lation [28–31], which is phenomenologically described
via a dissipative term in the Gross–Pitaevskii equa-
tion [32], and we plan to study its role in the
future.
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V.M.Gorkavenko, and A.O. Zaporozhchenko was
partially supported by the project ’Search for dark
matter and particles beyond the Standard Model’ of
the Ministry of Education and Science of Ukraine
(25BF051-01). The authors are grateful to A.I. Yaki-
menko for fruitful discussions and helpful comments.

APPENDIX

The residue

Δ(𝑢) = res
𝑘=0

(︂
𝑘 sin(𝑙𝑝𝑢𝑘)

Π(𝑘2)
𝑦𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0)

)︂
(A.1)

not change if we replace 𝑦𝑙𝑦𝑙−1 by 𝑗𝑙𝑗𝑙−1 + 𝑦𝑙𝑦𝑙−1, i.e.,

Δ(𝑢) = res
𝑘=0

(︃
𝑘 sin(𝑙𝑝𝑢𝑘)

Π(𝑘2)
(𝑗𝑙(𝑘𝑟0)𝑗𝑙−1(𝑘𝑟0)+

+𝑦𝑙(𝑘𝑟0)𝑦𝑙−1(𝑘𝑟0))

)︃
(A.2)

because 𝑗𝑙(𝑘𝑟0)𝑗𝑙−1(𝑘𝑟0) is regular at 𝑘 = 0. We introduce

𝑄𝑙(𝑥) = 𝑗𝑙(𝑥)𝑗𝑙−1(𝑥) + 𝑦𝑙(𝑥)𝑦𝑙−1(𝑥) (A.3)

because unlike 𝑦𝑙(𝑥)𝑦𝑙−1(𝑥) the function 𝑄(𝑥) is a polynomial
in inverse powers of 𝑥.

Definitions

𝑗𝑙(𝑥) = 𝑥𝑙

(︂
−

1

𝑥

𝑑

𝑑𝑥

)︂𝑙 sin𝑥

𝑥
, (A.4)

𝑦𝑙(𝑥) = −𝑥𝑙

(︂
−

1

𝑥

𝑑

𝑑𝑥

)︂𝑙 cos𝑥
𝑥

(A.5)

imply that

𝑗𝑙(𝑥) = −𝑗′𝑙−1(𝑥) + (𝑙 − 1)
𝑗𝑙−1(𝑥)

𝑥
(A.6)

and a similar relation holds for 𝑦𝑙(𝑥). Therefore,

𝑄𝑙(𝑥) = −
1

2

𝑑

𝑑𝑥
(𝑗2𝑙−1(𝑥) + 𝑦2𝑙−1(𝑥))+

+
𝑙−1

𝑥
(𝑗2𝑙−1(𝑥) + 𝑦2𝑙−1(𝑥)) =

=

(︂
−
1

2

𝑑

𝑑𝑥
+

𝑙−1

𝑥

)︂
(𝑗2𝑙−1(𝑥) + 𝑦2𝑙−1(𝑥)). (A.7)

Further, we have for 𝑗2𝑙 (𝑥) + 𝑦2𝑙 (𝑥) [33]

𝑗2𝑙 (𝑥) + 𝑦2𝑙 (𝑥) =
𝑙∑︁

𝑛=0

(2𝑛)!(𝑛+ 𝑙)!

4𝑛(𝑛!)2(𝑙 − 𝑛)!

1

𝑥2𝑛+2
. (A.8)

Then using (A.8), we find

𝑄𝑙(𝑥) =

𝑙−1∑︁
𝑛=0

(2𝑛)!(𝑛+ 𝑙)!

4𝑛(𝑛!)2(𝑙 − 𝑛− 1)!

1

𝑥2𝑛+3
. (A.9)

In view of the Taylor expansions

1

Π(𝑘2)
=

1

(𝑘2 + κ2)(𝑘2 − 𝑘23)
=
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=
1

κ2 + 𝑘23

(︂
1

𝑘2 − 𝑘23
−

1

𝑘2 + κ2

)︂
=

= −
1

κ2 + 𝑘23

∞∑︁
𝑚=0

(︃
1

𝑘2𝑚+2
3

+
(−1)𝑚

κ2𝑚+2

)︃
𝑘2𝑚, (A.10)

𝑘 sin(𝑙𝑝𝑢𝑘) =

∞∑︁
𝑠=0

(−1)𝑠(𝑙𝑝𝑢)2𝑠+1

(2𝑠+ 1)!
𝑘2𝑠+2, (A.11)

we obtain

Δ(𝑢) = −
1

κ2 + 𝑘23
res
𝑘=0

(︃
𝑙−1∑︁
𝑛=0

∞∑︁
𝑚,𝑠=0

(2𝑛)!(𝑛+ 𝑙)!

4𝑛(𝑛!)2(𝑙 − 𝑛− 1)!
×

×
(︂

1

𝑘2𝑚+2
3

+
(−1)𝑚

κ2𝑚+2

)︂
(−1)𝑠(𝑙𝑝𝑢)2𝑠+1

𝑟2𝑛+3
0 (2𝑠+ 1)!

1

𝑘2(𝑛−𝑚−𝑠)+1

)︃
. (A.12)

Selecting terms which are simple poles in 𝑘 and calculating the
residue, we obtain Δ(𝑢) given by Eq. (41) in the main text.

1. S. Chandrasekhar. Dynamical Friction. I. General consid-
erations: The coefficient of dynamical friction. Astrophys.
J. 97, 255 (1943).

2. H. Bondi, F. Hoyle. On the mechanism of accretion by
stars. Mon. Not. Roy. Astron. Soc. 104, 273 (1944).

3. V. Dokuchaev. Emission of magnetoacoustic waves in the
motion of stars in cosmic space. Soviet Astronomy 8, 23
(1964).

4. M. Ruderman, E. Spiegel. Galactic wakes. Astrophys. J.
165, 1 (1971).

5. Y. Rephaeli, E. Salpeter. Flow past a massive object and
the gravitational drag. Astrophys. J. 240, 20 (1980).

6. E.C. Ostriker. Dynamical friction in a gaseous medium.
Astrophys. J. 513, 252 (1999).

7. P.-H. Chavanis. Self-gravitating Bose–Einstein conden-
sates. Fundam. Theor. Phys. 178, 151 (2015).

8. J.C. Niemeyer. Small-scale structure of fuzzy and axion-
like dark matter. Prog. Part. Nucl. Phys. 113, 103787
(2020).

9. L. Hui. Wave dark matter. Ann. Rev. Astron. Astrophys.
59, 247 (2021).

10. E. G. M. Ferreira. Ultra-light dark matter. Astron. Astro-
phys. Rev. 29, 7 (2021).

11. P. Salucci. The distribution of dark matter in galaxies. As-
tron. Astrophys. Rev. 27, 2 (2019).

12. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Ultralight
scalars as cosmological dark matter. Phys. Rev. D 95,
043541 (2017).

13. L. Lancaster, C. Giovanetti, P. Mocz, Y. Kahn, M. Lisanti,
D.N. Spergel. Dynamical friction in a fuzzy dark matter
universe. JCAP 01, 001 (2020).

14. Y. Wang, R. Easther. Dynamical friction from ultralight
dark matter. Phys. Rev. D 105, 063523 (2022).

15. R. Boey, Y. Wang, E. Kendall, R. Easther. Dynamical
friction and black holes in ultralight dark matter solitons.
Phys. Rev. D 109, 103526 (2024).

16. A. Boudon, P. Brax, P. Valageas. Subsonic accretion and
dynamical friction for a black hole moving through a self-

interacting scalar dark matter cloud. Phys. Rev. D 106,
043507 (2022).

17. S.T.H. Hartman, H.A. Winther, D.F. Mota. Dynamical
friction in Bose–Einstein condensed self-interacting dark
matter at finite temperatures, and the Fornax dwarf
spheroidal. Astron. Astrophys. 647, A70 (2021).

18. R. Buehler, V. Desjacques, Dynamical friction in fuzzy
dark matter: Circular orbits. Phys. Rev. D 107, 023516
(2023).

19. L. Berezhiani, G. Cintia, V. De Luca, J. Khoury. Dynam-
ical friction in dark matter superfluids: The evolution of
black hole binaries. JCAP 06, 024 (2024).

20. S. Tremaine, J. Ostriker, S. Spitzer. The formation of the
nuclei of galaxies. Astrophys. J. 196, 407 (1975).

21. H. Plummer. On the problem of distribution in globular
star clusters. Mon. Not. R. Astron. Soc. 71, 460 (1911).

22. N. Glennon, N. Musoke, E.O. Nadler, C. Prescod-Wein-
stein, R.H. Wechsler. Dynamical friction in self-interacting
ultralight dark matter. Phys. Rev. D 109, 063501 (2024).

23. D. Blas. Dark matter properties from the Fornax globu-
lar cluster timing: dynamical friction and cored profiles.
In: 16th Marcel Grossmann Meeting on Recent Develop-
ments in Theoretical and Experimental General Relativ-
ity, Astrophysics and Relativistic Field Theories (2022),
pp. 2089–2100; arXiv:2205.00289 [hep-ph].

24. V.M. Gorkavenko, A.I. Yakimenko, A.O. Zaporozhchenko,
E.V. Gorbar. Dynamical friction in ultralight dark matter:
Plummer sphere perspective. Physica Scripta 100, 075039
(2025).

25. I. Gradsteyn, I. Ryzhik. Table of Integrals, Series, and
Products (Academic Press, 2014).

26. V. Desjacques, A. Nusser, R. Buehler. Analytic solution
to the dynamical friction acting on circularly moving per-
turbers. Astrophys. J. 928, 64 (2022).

27. V.M. Gorkavenko, O.V. Barabash, T.V. Gorkavenko,
O.M. Teslyk, A.O. Zaporozhchenko, J. Jia, A.I. Yaki-
menko, E.V. Gorbar. Dynamical friction in rotating ultra-
light dark matter galactic cores. Class. Quant. Grav. 41,
235013 (2024).

28. H.-Y. Schive, T. Chiueh, T. Broadhurst. Cosmic structure
as the quantum interference of a coherent dark wave. Na-
ture Phys. 10, 496 (2014).

29. B. Schwabe, J.C. Niemeyer, J.F. Engels. Simulations of
solitonic core mergers in ultralight axion dark matter cos-
mologies. Phys. Rev. D 94, 043513 (2016).

30. P. Mocz, M. Vogelsberger, V.H. Robles, J. Zavala, M. Boy-
lan-Kolchin, A. Fialkov, L. Hernquist. Galaxy formation
with BECDM – I. Turbulence and relaxation of idealized
haloes. Mon. Not. Roy. Astron. Soc. 471, 4559 (2017).

31. J. Veltmaat, J.C. Niemeyer, B. Schwabe. Formation and
structure of ultralight bosonic dark matter halos. Phys.
Rev. D 98, 043509 (2018).

32. P.-H. Chavanis. Predictive model of BEC dark matter halos
with a solitonic core and an isothermal atmosphere. Phys.
Rev. D 100, 083022 (2019).

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 11 767



O.V. Barabash, T.V. Gorkavenko, V.M. Gorkavenko et al.

33. W.J. Frank, W.L. Daniel, F.B. Ronald, W.C. Charles.
N IST Handbook of Mathematical Functions (Cambridge
University Press, 2010). Received 04.25

О.В.Барабаш, Т.В. Горкавенко,
В.М. Горкавенко, О.М.Теслик, Н.С.Яковенко,
А.О. Запорожченко, Е.В. Горбар

АНАЛIТИЧНI РОЗРАХУНКИ
ДИНАМIЧНОГО ТЕРТЯ ДЛЯ СФЕРИ
ПЛАММЕРА В НАДЛЕГКIЙ ТЕМНIЙ МАТЕРIЇ

Визначено силу динамiчного тертя, що дiє на неточковий
об’єкт (кульовi скупчення та карликовi галактики), який
рухається в середовищi надлегкої бозонної темної матерiї у

станi бозе–айнштайнiвського конденсату. Моделюючи нето-
чковий об’єкт як сферу Пламмера радiуса 𝑙𝑝, ми знайшли
аналiтичнi вирази для радiальної та тангенцiальної компо-
нент сили динамiчного тертя, якi в граничному випадку
𝑙𝑝 → 0 переходять у вiдповiднi аналiтичнi вирази, отрима-
нi в лiтературi для точкового об’єкта. Проаналiзовано за-
лежнiсть сили динамiчного тертя вiд маси бозона та вста-
новлено її немонотонний характер в iнтервалi мас 10−23–
10−21 еВ.

Ключ о в i с л о в а: надлегка бозонна темна матерiя, сфе-
ра Пламмера, сила динамiчного тертя, кулястi скупчення,
карликовi галактики.
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