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КОГЕРЕНТНIСТЬ, ПОРУШЕНА
СИМЕТРIЯ ТА НЕДИСИПАТИВНИЙ
РУХ КВАНТОВОГО ОСЦИЛЯТОРАУДК 539

На прикладi квантового осцилятора розглянуто зв’язок мiж динамiчним когерентним
станом iз порушенням фазової симетрiї та iснуванням недисипативного руху. У бага-
точастинкових системах взаємодiючих частинок подiбнi стани проявляються як над-
плиннiсть та надпровiднiсть.
Ключ о в i с л о в а: квантовий осцилятор, когерентнi стани, порушена фазова симетрiя,
аномальнi та нормальнi середнi, парнi кореляцiї, надплиннiсть, надпровiднiсть.

1. Вступ

Для розумiння властивостей багаточастинкових
систем важливу роль вiдiграють точно розв’язу-
ванi задачi, зокрема моделi iдеального газу та гар-
монiчного квантового осцилятора. Динамiчний ко-
герентний стан (ДКС) квантового осцилятора роз-
глядався ще Шредiнгером на зорi квантової меха-
нiки [1,2]. Квантовий осцилятор можна розглядати
як рiзновид найпростiшої моделi твердого тiла [3].
Представлення когерентних станiв (КС) широко
використовується при вивченнi рiзних квантових
систем [4–7].

У цiй роботi розглядається гармонiчний кванто-
вий осцилятор у динамiчному когерентному ста-
нi. Звертається увага на те, що особливiстю такого
стану є те, що вiн має недисипативний внутрiшнiй
рух з ненульовим середнiм iмпульсом, i водночас
симетрiя вiдносно фазового перетворення виявля-
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ється порушеною. Зазначається, що перехiд до ко-
герентного стану з порушеною фазовою симетрi-
єю приводить до iснування недисипативних пото-
кiв, якi в системах Бозе проявляються як надплин-
нiсть, а в заряджених системах Фермi – як надпро-
вiднiсть.

2. “Нормальний” та когерентний
стани квантового осцилятора

Гамiльтонiан квантового осцилятора [2]

𝐻 =
𝑝2

2𝑀
+

𝑀𝜔2𝑥2

2
(1)

можна представити через несамоспряженi опера-
тори народження 𝑎+ та анiгiляцiї 𝑎, що задо-
вольняють комутацiйне спiввiдношення

[︀
𝑎, 𝑎+

]︀
≡

≡ 𝑎𝑎+ − 𝑎+𝑎 = 1. Оператори координати та iм-
пульсу визначаються через цi оператори спiввiд-
ношеннями

𝑥 =

√︂
~

2𝑀𝜔
(𝑎+ + 𝑎),

𝑝 ≡ −𝑖~
𝑑

𝑑𝑥
= 𝑖

√︂
𝑀~𝜔
2

(𝑎+ − 𝑎),

(2)
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i гамiльтонiан (1) набуває вiдомого вигляду

𝐻 = ~𝜔
(︂
𝑎+𝑎+

1

2

)︂
. (3)

Вiн iнварiантний вiдносно фазового перетворення

𝑎 → 𝑎′ = 𝑎𝑒𝑖𝛼, 𝑎+ → 𝑎′+ = 𝑎+𝑒−𝑖𝛼 (4)

або перетворення операторiв координати та iм-
пульсу
𝑥 → 𝑥′ = − 𝑝

𝑀𝜔
sin𝛼+ 𝑥 cos𝛼,

𝑝 → 𝑝′ = 𝑝 cos𝛼+𝑀𝜔𝑥 sin𝛼,
(5)

де 𝛼 – довiльне дiйсне число. Власнi стани га-
мiльтонiана (3) 𝐻|𝑛⟩ = 𝜀𝑛|𝑛⟩ з енергiєю 𝜀𝑛 ≡
≡ ~𝜔(𝑛+ 1/2) характеризуються цiлими числами
𝑛 = 0, 1, 2, ... . Залежнiсть векторiв вiд часу в ста-
нах з фiксованою енергiєю має вигляд |𝑛, 𝑡⟩ =
= 𝑒−𝑖 𝜀𝑛

~ 𝑡|𝑛⟩. Дiї операторiв 𝑎+ та 𝑎 на вектор станiв
задаються вiдомими спiввiдношеннями

𝑎+|𝑛⟩ =
√
𝑛+ 1 |𝑛+ 1⟩, 𝑎|𝑛⟩ =

√
𝑛 |𝑛− 1⟩,

𝑎+𝑎|𝑛⟩ = 𝑛|𝑛⟩.
Основний (вакуумний) стан |0⟩ визначається як
розв’язок рiвняння 𝑎|0⟩ = 0, а вектори збудже-
них станiв осцилятора знаходяться в результатi
дiї степенiв оператора 𝑎+ на основний стан |𝑛⟩ =

= (𝑎+)𝑛√
𝑛!

|0⟩. У координатному представленнi хви-
льовi функцiї осцилятора виражаються через по-
лiноми Ермiта 𝐻𝑛(𝑥) [2],

𝜙𝑛(𝑥) =

(︂
𝑀𝜔

𝜋~

)︂1/4
1√
2𝑛𝑛!

𝑒−
𝑀𝜔
2~ 𝑥2

𝐻𝑛

(︂
𝑥

√︂
𝑀𝜔

~

)︂
. (6)

У стацiонарних станах осцилятора середнi значен-
ня координати та iмпульсу дорiвнюють нулю,

𝑥 ≡ ⟨𝑛|𝑥|𝑛⟩ = 0, 𝑝 ≡ ⟨𝑛|𝑝|𝑛⟩ = 0,

а добуток флуктуацiй координати та iмпульсу

𝐼 ≡
√︁

(𝑥2 − 𝑥2)(𝑝2 − 𝑝2) для 𝑛-го рiвня становить
𝐼𝑛 = ~

(︀
𝑛 + 1

2

)︀
. Мiнiмальне значення добутку

флуктуацiй координати та iмпульсу досягається в
основному станi, 𝐼0 = ~/2. Такi стани осцилятора
з певною енергiєю називатимемо “нормальними”.

Довiльний залежний вiд часу вектор стану мо-
жна розкласти по повнiй системi власних векторiв
осцилятора,⃒⃒
Φ(𝑡)

⟩︀
=

∞∑︁
𝑛=0

𝐶𝑛 𝑒
−𝑖 𝜀𝑛

~ 𝑡 |𝑛⟩. (7)

Розглянемо такий конкретний стан, у якому кое-
фiцiєнти розкладання у виразi (7) мають вигляд

𝐶𝑛 =
𝜒𝑛

√
𝑛!

𝑒−
|𝜒 |2

2 ,

∞∑︁
𝑛=0

⃒⃒
𝐶𝑛

⃒⃒2
= 1, (8)

де 𝜒 – довiльне комплексне число, що не залежить
вiд часу. У випадку коефiцiєнтiв розкладу (8) ймо-
вiрнiсть знаходження осцилятора у станi |𝑛⟩ визна-
чається розподiлом Пуассона

⃒⃒
𝐶𝑛

⃒⃒2
= 𝑒−|𝜒|2 |𝜒|2𝑛

𝑛! .
Тодi стан (7) набуває вигляду

⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝑒−

|𝜒 |2
2

∞∑︁
𝑛=0

𝜒𝑛

√
𝑛!

𝑒−𝑖 𝜀𝑛
~ 𝑡|𝑛⟩. (9)

При 𝜒 = 0 вираз (9) збiгається з хвильовою фун-
кцiєю осцилятора в основному станi. Вектор (9)
є власним станом оператора анiгiляцiї, 𝑎|Φ𝜒(𝑡)

⟩︀
=

= 𝜒(𝑡)
⃒⃒
Φ𝜒(𝑡)

⟩︀
, з власним значенням, що залежить

вiд часу, 𝜒(𝑡) ≡ 𝜒𝑒−𝑖𝜔𝑡. Зауважимо, що зазвичай
[4–7] розглядаються стацiонарнi когерентнi стани

|𝜒⟩ ≡
⃒⃒
Φ𝜒(0)

⟩︀
= 𝑒−

|𝜒 |2
2

∞∑︁
𝑛=0

𝜒𝑛

√
𝑛!

|𝑛⟩. (10)

Динамiчний когерентний стан можна отрима-
ти дiєю оператора 𝑈(𝑡) = exp

[︀
− 𝑖𝜔𝑡

(︀
𝑎+𝑎 + 1

2

)︀]︀
на стацiонарну когерентну систему (КС). Важли-
во пiдкреслити, що стацiонарна КС не є розв’яз-
ком стацiонарного рiвняння Шредiнгера, тодi як
ДКС (9) є точним розв’язком нестацiонарного
equation Шредiнгера. Розгляд нестацiонарних ко-
герентних станiв є принципово важливим при ви-
вченнi систем, в яких можуть iснувати недисипа-
тивнi потоки.

У координатному представленнi функцiя (9) на-
буває вигляду

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−

|𝜒 |2
2 𝑒−𝑖𝜔𝑡

2 ×

× 𝑒−
𝑀𝜔
2~ 𝑥2

∞∑︁
𝑛=0

𝜒(𝑡)𝑛√
2𝑛𝑛!

𝐻𝑛

(︂
𝑥

√︂
𝑀𝜔

~

)︂
. (11)

Використовуючи формулу для суми полiномiв Ер-
мiта
∞∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐻𝑘(𝑥) = 𝑒2𝑥𝑡−𝑡2 , (12)
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отримуємо представлення функцiї (11) у виглядi

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−

|𝜒 |2
2 𝑒−𝑖𝜔𝑡

2 +
𝜒2(𝑡)

2 ×

× 𝑒
−𝑀𝜔

2~

(︁
𝑥−𝜒(𝑡)

√
2~
𝑀𝜔

)︁2
. (13)

Ця функцiя є хвильовим пакетом, який не дифун-
дує з часом.

3. Рiзниця мiж симетрiями
“нормального” та когерентного станiв

Як зазначалося, гамiльтонiан (3) є симетричним
вiдносно фазових перетворень (4). Якщо осциля-
тор знаходиться в станах з фiксованою енергi-
єю 𝜀𝑛 ≡ ~𝜔

(︀
𝑛 + 1

2

)︀
, то середнi лише фазово-iн-

варiантних операторiв можуть бути ненульовими,
⟨𝑛|𝑎+𝑎|𝑛⟩ = 𝑛, тодi як середнi фазово-неiнварi-
антних операторiв дорiвнюють нулю, ⟨𝑛|𝑎|𝑛⟩ =
= ⟨𝑛|𝑎+|𝑛⟩ = 0 та ⟨𝑛|𝑎2|𝑛⟩ = ⟨𝑛|𝑎+2|𝑛⟩ = 0. Таким
чином, симетрiя середнiх у нормальних станах збi-
гається iз симетрiєю гамiльтонiана.

У когерентних станах як нормальнi середнi вiд
фазово-iнварiантних операторiв створення та анi-
гiляцiї, так i аномальнi середнi вiд фазово-неiнва-
рiантних операторiв виявляються ненульовими,⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑎+𝑎

⃒⃒
Φ𝜒(𝑡)

⟩︀
= |𝜒|2,⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎+

⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒*(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎+2

⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒*2(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎2
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒2(𝑡).

(14)

У цьому випадку симетрiя аномальних середнiх
виявляється нижчою за симетрiю гамiльтонiа-
на (3). Такi стани називаються станами зi спон-
танно порушеною фазовою симетрiєю.

Середнi значення координати та iмпульсу в коге-
рентному станi, на вiдмiну вiд нормального стану,
не дорiвнюють нулю та залежать вiд часу,

𝑥(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑥
⃒⃒
Φ𝜒(𝑡)

⟩︀
=

√︂
~

2𝑀𝜔

(︀
𝜒*(𝑡) + 𝜒(𝑡)

)︀
,

𝑝(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑝
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝑖

√︂
𝑀~𝜔
2

(︀
𝜒*(𝑡)− 𝜒(𝑡)

)︀
.

(15)

Звiдси випливає, що

𝑥̇(𝑡) = 𝑝(𝑡)/𝑀, 𝑝̇(𝑡) = −𝑀𝜔2 𝑥(𝑡),

а середнi значення як координати, так i iмпульсу
задовольняють рiвняння для класичного осциля-
тора

𝑥̈(𝑡) + 𝜔2𝑥(𝑡) = 0, 𝑝̈(𝑡) + 𝜔2𝑝(𝑡) = 0.

На вiдмiну вiд стацiонарного стану в нормально-
му станi осцилятора, де середнiй iмпульс дорiвнює
нулю, у динамiчному когерентному станi середнiй
iмпульс не дорiвнює нулю та коливається з часом.
Отже, у динамiчному когерентному станi iснує не-
дисипативний внутрiшнiй рух, який аналогiчний
станам багаточастинкових систем з недисипатив-
ними потоками. Хвильову функцiю когерентного
стану (13) можна виразити через усереднення 𝑥(𝑡)
та 𝑝(𝑡),

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−𝑖 (𝜔𝑡

2 +
𝑝(𝑡)𝑥(𝑡)

2~ )×

× 𝑒𝑖
𝑝(𝑡)
~ 𝑥 𝑒−

𝑀𝜔
2~ (𝑥−𝑥(𝑡))2 . (16)

У цiй формi цю хвильову функцiю вперше отримав
Шредiнгер [1, 2].

Усереднення по когерентному стану квадратiв
координати та iмпульсу мають вигляд

𝑥2(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑥2

⃒⃒
Φ𝜒(𝑡)

⟩︀
=

=
~

2𝑀𝜔

(︀
𝜒(𝑡)*2 + 𝜒(𝑡)2 + 2|𝜒|2 + 1

)︀
,

𝑝2(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑝2
⃒⃒
Φ𝜒(𝑡)

⟩︀
=

= −𝑀~𝜔
2

(︀
𝜒(𝑡)*2 + 𝜒(𝑡)2 − 2|𝜒|2 − 1

)︀
.

(17)

Враховуючи рiвняння (15) та (17), знаходимо для
спiввiдношення невизначеностi

𝐼 ≡
√︁(︀

𝑥2 − 𝑥2
)︀(︀
𝑝2 − 𝑝2

)︀
=

~
2
. (18)

Як вже було показано Шредiнгером [1, 2], неви-
значенiсть 𝐼 (18) у когерентному станi мiнiмаль-
на. Для нормального стану осцилятора невизначе-
нiсть мiнiмальна лише в основному станi.

У когерентному станi енергiя осцилятора точно
не визначена. Квантово-механiчне середнє значе-
ння енергiї в динамiчному когерентному станi не
залежить вiд часу та може бути виражене через
середнi значення квадратiв координати та iмпуль-
су: (17),

𝜀(𝜒) = ~𝜔
(︁⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑎+𝑎

⃒⃒
Φ𝜒(𝑡)

⟩︀
+

1

2

)︁
=
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= ~𝜔
(︁
|𝜒|2 + 1

2

)︁
=

𝑝2(𝑡)

2𝑀
+

𝑀𝜔2

2
𝑥2(𝑡). (19)

Таким чином, динамiчний когерентний стан – це
стан з постiйною середньою енергiєю, в якому iснує
незатухаючий рух i порушується фазова симетрiя.

4. Обговорення та висновки

Головною особливiстю надплинних та надпровiд-
них систем є можливiсть iснування в них стацiо-
нарних потокiв маси або заряду як завгодно дов-
го без затухання. Перехiд з нормального стану в
надплинний або надпровiдний стан є фазовим пе-
реходом. Згiдно iз загальною теорiєю фазових пе-
реходiв [8], фазовий перехiд в упорядкований стан
повинен супроводжуватися появою нової характе-
ристики – параметра порядку. Довгий час було не-
зрозумiло, що таке параметр порядку в надпровiд-
них або надплинних переходах. Ще до вiдкриття
надплинностi Л.В. Шубнiков [9] запропонував гi-
потезу про те, що фазовий перехiд He I – He II су-
проводжується впорядкуванням, подiбним до пе-
реходу з рiдкого стану в кристалiчний. Однак, пi-
сля вiдкриття надплинностi [10, 11], стало незро-
зумiло, як таке впорядкування здатне пiдтриму-
вати недисипативнi потоки.

Правильну форму параметра порядку в рамках
феноменологiчного опису запропонували Гiнзбург
i Ландау [12]. Вони використовували комплексну
макроскопiчну хвильову функцiю як параметр по-
рядку для надпровiдникiв. Такий параметр поряд-
ку дозволяє побудувати вираз для макроскопiчної
густини недисипативного потоку, подiбно до того,
як будується густина потоку ймовiрностi в кван-
товiй механiцi. Оскiльки макроскопiчна хвильова
функцiя, як i хвильова функцiя в квантовiй меха-
нiцi, визначена з точнiстю до довiльного фазового
множника, то такий стан називається станом з по-
рушеною фазовою симетрiєю.

У спрощеному варiантi для надпровiдникiв
мiкроскопiчне обґрунтування теорiї Гiнзбурга–
Ландау на основi теорiї БКШ [13] було надано
Горьковим [14]. Вiн показав, що iснування надпро-
вiдних властивостей пов’язане з появою аномаль-
них середнiх. Феноменологiчний пiдхiд Гiнзбурга–
Ландау був поширений Гiнзбургом та Пiтаєвським
на надплинну бозе-рiдину [15]. Розвиток цiєї тео-
рiї був продовжений у роботах [16, 17]. Слiд за-
значити, що у вiдомiй теорiї надплинностi Ландау

[18, 19] порушення фазової симетрiї також неяв-
но враховується шляхом введення надплинної гу-
стини, пов’язаної з модулем комплексного параме-
тра порядку, та надплинної швидкостi, що визна-
чається градiєнтом фази. У бозе-системах просте
моделювання надплинностi при нульовiй темпера-
турi приводить до рiвняння Гросса–Пiтаєвського
[20, 21]. Макроскопiчна хвильова функцiя в цiй те-
орiї є когерентним станом [22].

Для iснування макроскопiчної комплексної хви-
льової функцiї система повинна мати ненульовi
аномальнi середнi виду ⟨𝑎𝑘1𝜎1𝑎𝑘2𝜎2⟩ або ⟨𝑎𝑘𝜎⟩, якi
порушують фазову симетрiю. У цьому випадку
макроскопiчна хвильова функцiя надпровiдника у
станi 𝑠 матиме вигляд

Ψ(r1, r2) ∼
∑︁
k1,k2

𝑒−𝑖(k1r1+k2r2)⟨𝑎k1↑𝑎k2↓⟩,

а макроскопiчна хвильова функцiя системи части-
нок Бозе з нульовим спiном – вигляд

Ψ(r) ∼
∑︁
k

𝑒−𝑖kr⟨𝑎k⟩.

Наразi, як вже видно з цитованих робiт, цiлком
очевидно, що в будь-якiй фiзичнiй системi, де iсну-
ють явища надплинностi або надпровiдностi, фа-
зова симетрiя обов’язково має бути порушена. Во-
дночас, звичайно, кожна система має й властиво-
стi, специфiчнi саме для неї. Проте, з’явилася i
продовжує з’являтися велика кiлькiсть робiт, при-
свячених цiй проблемi, де порушення фазової си-
метрiї вiдсутнє. У цьому випадку не може iснувати
станiв з рiвноважними недисипативними потока-
ми [23].

Однак, проблема встановлення на мiкроскопi-
чному рiвнi зв’язку мiж когерентнiстю стану, по-
рушенням фазової симетрiї та iснуванням неди-
сипативних потокiв у багаточастинкових системах
Фермi та Бозе продовжує залишатися актуальною.
У цiй статтi на простому прикладi квантового гар-
монiчного осцилятора простежується зв’язок мiж
порушенням фазової симетрiї та iснуванням ма-
кроскопiчного руху в динамiчному когерентному
станi. Показано, що, на вiдмiну вiд станiв осци-
лятора з фiксованою енергiєю, в яких середнiй iм-
пульс дорiвнює нулю, в динамiчному когерентному
станi вiн вiдмiнний вiд нуля та коливається згiдно
з рiвнянням для класичного осцилятора. Водночас
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Когерентнiсть, порушена симетрiя та недисипативний рух квантового осцилятора

у ДКС фазово-неiнварiантнi аномальнi середнi та-
кож виявляються вiдмiнними вiд нуля.

Зауважимо, що енергiя в розглянутiй ДКС
визначається лише фазово-iнварiантним сере-
днiм (19). У бiльш складних системах взаємодiю-
чих частинок енергiя та iншi спостережуванi ве-
личини визначаються не лише нормальними, а й
аномальними середнiми. Таким чином, когерентнi
стани, не будучи власними функцiями деякого ер-
мiтового оператора, вносять свiй внесок у спосте-
режуванi величини. Прикладом цього є щiлина в
спектрi квазiчастинкових збуджень надпровiдни-
ка. Являючись вимiрюваною величиною, вона ви-
значається аномальним середнiм. Таким чином, у
станах з порушеною фазовою симетрiєю понят-
тя квантово-механiчної спостережуваної величини
має бiльш загальний характер, нiж у нормальних
системах.

Автор дякує А.А. Сороцi за допомогу в пiдго-
товцi статтi.
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Переклад на українську мову О. Войтенка

Yu.M.Poluektov

COHERENCE, BROKEN
SYMMETRY AND NONDISSIPATIVE
MOTION OF A QUANTUM OSCILLATOR

Using the example of a quantum oscillator, the connection be-

tween the dynamical coherent state with the phase symmetry

breaking and the existence of the non-dissipative motion is con-

sidered. In multiparticle systems of interacting particles similar

states manifest themselves as superfluidity and superconduc-

tivity.

Ke yw o r d s: quantum oscillator, coherent states, broken
phase symmetry, anomalous and normal averages, pair corre-
lations, superfluidity, superconductivity.
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