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COHERENCE, BROKEN
SYMMETRY AND NONDISSIPATIVE
MOTION OF A QUANTUM OSCILLATOR

Using the example of a quantum oscillator, the connection between the dynamical coherent
state with the phase symmetry breaking and the existence of the non-dissipative motion is
considered. In multiparticle systems of interacting particles similar states manifest themselves
as superfluidity and superconductivity.
K e yw o r d s: quantum oscillator, coherent states, broken phase symmetry, anomalous and
normal averages, pair correlations, superfluidity, superconductivity.

1. Introduction

For understanding the properties of multiparticle sys-
tems, exactly solvable problems play an important
role, in particular, the ideal gas and harmonic quan-
tum oscillator models. The dynamical coherent state
(DCS) of a quantum oscillator was considered as early
as by Schrödinger at the dawn of quantum mechan-
ics [1,2]. A quantum oscillator can be considered as a
simplest model of a solid body [3]. The representation
of coherent states (CS) is widely used in the study of
various quantum systems [4–7].

In this paper, we consider a harmonic quantum os-
cillator in the dynamical coherent state. Attention is
paid to the fact that the peculiarity of such a state
is that it has a nondissipative internal motion with a
non-zero average momentum, and at the same time
the symmetry with respect to the phase transforma-
tion proves to be broken. It is noted that the transi-
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tion to a coherent state with broken phase symmetry
leads to the existence of nondissipative flows, which
in Bose systems manifest themselves as superfluidity,
and in charged Fermi systems as superconductivity.

2. “Normal” and Coherent
States of a Quantum Oscillator

The Hamiltonian of a quantum oscillator [2]

𝐻 =
𝑝2

2𝑀
+

𝑀𝜔2𝑥2

2
(1)

can be represented in terms of non-self-adjoint cre-
ation 𝑎+ and annihilation 𝑎 operators, satisfying the
commutation relation

[︀
𝑎, 𝑎+

]︀
≡ 𝑎𝑎+ − 𝑎+𝑎 = 1. The

coordinate and momentum operators are determined
through these operators by the relations

𝑥 =

√︂
~

2𝑀𝜔
(𝑎+ + 𝑎),

𝑝 ≡ −𝑖~
𝑑

𝑑𝑥
= 𝑖

√︂
𝑀~𝜔
2

(𝑎+ − 𝑎),

(2)

and the Hamiltonian (1) takes the known form

𝐻 = ~𝜔
(︂
𝑎+𝑎+

1

2

)︂
. (3)
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It is invariant with respect to the phase transforma-
tion

𝑎 → 𝑎′ = 𝑎𝑒𝑖𝛼, 𝑎+ → 𝑎′+ = 𝑎+𝑒−𝑖𝛼 (4)

or transformation of the coordinate and momentum
operators

𝑥 → 𝑥′ = − 𝑝

𝑀𝜔
sin𝛼+ 𝑥 cos𝛼,

𝑝 → 𝑝′ = 𝑝 cos𝛼+𝑀𝜔𝑥 sin𝛼,
(5)

where 𝛼 is an arbitrary real number. The eigenstates
of the Hamiltonian (3) 𝐻|𝑛⟩ = 𝜀𝑛|𝑛⟩ with energy
𝜀𝑛 ≡ ~𝜔(𝑛 + 1/2) are characterized by integers 𝑛 =
= 0, 1, 2, ... . The time dependence of vectors in states
with fixed energy has the form |𝑛, 𝑡⟩ = 𝑒−𝑖 𝜀𝑛

~ 𝑡|𝑛⟩. The
actions of the operators 𝑎+, 𝑎 on the state vector are
given by the known relations 𝑎+|𝑛⟩ =

√
𝑛+ 1 |𝑛+1⟩,

𝑎|𝑛⟩ =
√
𝑛 |𝑛 − 1⟩, 𝑎+𝑎|𝑛⟩ = 𝑛|𝑛⟩. The ground (vac-

uum) state |0⟩ is defined as a solution of the equa-
tion 𝑎|0⟩ = 0, and the vectors of excited states of
the oscillator are found as a result of the action
of powers of the operator 𝑎+ on the ground state
|𝑛⟩ = (𝑎+)𝑛√

𝑛!
|0⟩. In the coordinate representation, the

wave functions of the oscillator are expressed through
the Hermite polynomials 𝐻𝑛(𝑥) [2]:

𝜙𝑛(𝑥) =

(︂
𝑀𝜔

𝜋~

)︂1/4
1√
2𝑛𝑛!

𝑒−
𝑀𝜔
2~ 𝑥2

𝐻𝑛

(︂
𝑥

√︂
𝑀𝜔

~

)︂
. (6)

In the stationary states of the oscillator, the average
values of the coordinate and momentum are equal
to zero 𝑥 ≡ ⟨𝑛|𝑥|𝑛⟩ = 0, 𝑝 ≡ ⟨𝑛|𝑝|𝑛⟩ = 0, and
the product of coordinate and momentum fluctua-

tions 𝐼 ≡
√︁(︀

𝑥2 − 𝑥2
)︀(︀
𝑝2 − 𝑝2

)︀
for the 𝑛-th level is

𝐼𝑛 = ~
(︀
𝑛+ 1

2

)︀
. The minimum value of the product of

coordinate and momentum fluctuations is achieved in
the ground state 𝐼0 = ~/2. Such states of the oscilla-
tor with a certain energy will be called “normal”.

An arbitrary time-dependent state vector can be
decomposed over the complete system of eigenvectors
of the oscillator⃒⃒
Φ(𝑡)

⟩︀
=

∞∑︁
𝑛=0

𝐶𝑛 𝑒
−𝑖 𝜀𝑛

~ 𝑡 |𝑛⟩. (7)

Let us consider such a specific state in which the ex-
pansion coefficients in (7) have the form

𝐶𝑛 =
𝜒𝑛

√
𝑛!

𝑒−
|𝜒 |2

2 ,

∞∑︁
𝑛=0

⃒⃒
𝐶𝑛

⃒⃒2
= 1, (8)

where 𝜒 is an arbitrary complex number that is in-
dependent of time. In the case of expansion coeffi-
cients (8), the probability of finding the oscillator in
the state |𝑛⟩ is determined by the Poisson distribu-
tion

⃒⃒
𝐶𝑛

⃒⃒2
= 𝑒−|𝜒|2 |𝜒|2𝑛

𝑛! . Then the state (7) takes the
form⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝑒−

|𝜒 |2
2

∞∑︁
𝑛=0

𝜒𝑛

√
𝑛!

𝑒−𝑖 𝜀𝑛
~ 𝑡|𝑛⟩. (9)

At 𝜒 = 0 (9) coincides with the wave function of
the oscillator in the ground state. The vector (9) is
an eigenstate of the annihilation operator 𝑎|Φ𝜒(𝑡)⟩ =
= 𝜒(𝑡)|Φ𝜒(𝑡)⟩ with the time-dependent eigenvalue
𝜒(𝑡) ≡ 𝜒𝑒−𝑖𝜔𝑡. Note that usually one considers the
stationary coherent states [4–7]:

|𝜒⟩ ≡
⃒⃒
Φ𝜒(0)

⟩︀
= 𝑒−

|𝜒 |2
2

∞∑︁
𝑛=0

𝜒𝑛

√
𝑛!

|𝑛⟩. (10)

The dynamical coherent state can be obtained by the
action of the operator 𝑈(𝑡) = exp

[︀
− 𝑖𝜔𝑡

(︀
𝑎+𝑎 + 1

2

)︀]︀
on the stationary CS. It is important to emphasize
that the stationary CS is not a solution of the sta-
tionary Schrödinger equation, whereas the DCS (9)
is an exact solution of the nonstationary Schrödinger
equation. Consideration of the nonstationary coher-
ent states is fundamentally important in the study of
systems in which nondissipative flows may exist.

In the coordinate representation the function (9)
takes the form

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−

|𝜒 |2
2 𝑒−𝑖𝜔𝑡

2 ×

× 𝑒−
𝑀𝜔
2~ 𝑥2

∞∑︁
𝑛=0

𝜒(𝑡)𝑛√
2𝑛𝑛!

𝐻𝑛

(︂
𝑥

√︂
𝑀𝜔

~

)︂
. (11)

Using the formula for a sum of Hermite polynomials
∞∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐻𝑘(𝑥) = 𝑒2𝑥𝑡−𝑡2 , (12)

we obtain the representation of function (11) in the
form

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−

|𝜒 |2
2 𝑒−𝑖𝜔𝑡

2 +
𝜒2(𝑡)

2 ×

× 𝑒
−𝑀𝜔

2~

(︁
𝑥−𝜒(𝑡)

√
2~
𝑀𝜔

)︁2
. (13)

This function is a wave packet that does not diffuse
with time.
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3. Difference between Symmetries
of “Normal” and Coherent States

As noted, the Hamiltonian (3) is symmetric with re-
spect to the phase transformations (4). If the oscilla-
tor is in states with fixed energy 𝜀𝑛 ≡ ~𝜔

(︀
𝑛+ 1

2

)︀
, then

the averages of only the phase-invariant operators can
be nonzero ⟨𝑛|𝑎+𝑎|𝑛⟩ = 𝑛, while the averages of the
phase-noninvariant operators ⟨𝑛|𝑎|𝑛⟩ = ⟨𝑛|𝑎+|𝑛⟩ = 0
and ⟨𝑛|𝑎2|𝑛⟩ = ⟨𝑛|𝑎+2|𝑛⟩ = 0 are equal to zero. Thus,
the symmetry of the averages in the normal states co-
incides with the symmetry of the Hamiltonian.

In the coherent states, both the normal aver-
ages from the phase-invariant creation and annihila-
tion operators and the anomalous averages from the
phase-noninvariant operators turn out to be nonzero:⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑎+𝑎

⃒⃒
Φ𝜒(𝑡)

⟩︀
= |𝜒|2,⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎+

⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒*(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎+2

⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒*2(𝑡),⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎2
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝜒2(𝑡).

(14)

In this case, the symmetry of the anomalous aver-
ages turns out to be lower than the symmetry of the
Hamiltonian (3). Such states are called states with
spontaneously broken phase symmetry.

The average values of the coordinate and momen-
tum in the coherent state, in contrast to the normal
state, are nonzero and depend on time:

𝑥(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑥
⃒⃒
Φ𝜒(𝑡)

⟩︀
=

√︂
~

2𝑀𝜔

(︀
𝜒*(𝑡) + 𝜒(𝑡)

)︀
,

𝑝(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑝
⃒⃒
Φ𝜒(𝑡)

⟩︀
= 𝑖

√︂
𝑀~𝜔
2

(︀
𝜒*(𝑡)− 𝜒(𝑡)

)︀
.

(15)

It follows that 𝑥̇(𝑡) = 𝑝(𝑡)/𝑀 , 𝑝̇(𝑡) = −𝑀𝜔2 𝑥(𝑡), and
the average values of both coordinate and momentum
satisfy the classical oscillator equation 𝑥̈(𝑡)+𝜔2𝑥(𝑡) =
= 0, 𝑝̈(𝑡) + 𝜔2𝑝(𝑡) = 0. In contrast to the stationary
state in the normal state of the oscillator, where the
average momentum is zero, in the dynamical coher-
ent state the average momentum is nonzero and os-
cillates in time. Therefore, in the dynamical coherent
state there exists a nondissipative internal motion,
which is analogous to states of multiparticle systems
with nondissipative flows. The wave function of the
coherent state (13) can be expressed through the ave-

rages 𝑥(𝑡), 𝑝(𝑡):

Φ𝜒(𝑥, 𝑡) =

(︂
𝑀𝜔

𝜋~

)︂1/4
𝑒−𝑖 (𝜔𝑡

2 +
𝑝(𝑡)𝑥(𝑡)

2~ )×

× 𝑒𝑖
𝑝(𝑡)
~ 𝑥 𝑒−

𝑀𝜔
2~ (𝑥−𝑥(𝑡))2 . (16)

In this form, this wave function was first obtained by
Schrödinger [1, 2].

The averages over the coherent state of the squares
of coordinate and momentum have the form

𝑥2(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑥2

⃒⃒
Φ𝜒(𝑡)

⟩︀
=

=
~

2𝑀𝜔

(︀
𝜒(𝑡)*2 + 𝜒(𝑡)2 + 2|𝜒|2 + 1

)︀
,

𝑝2(𝑡) =
⟨︀
Φ𝜒(𝑡)

⃒⃒
𝑝2
⃒⃒
Φ𝜒(𝑡)

⟩︀
=

= −𝑀~𝜔
2

(︀
𝜒(𝑡)*2 + 𝜒(𝑡)2 − 2|𝜒|2 − 1

)︀
.

(17)

Taking into account (15) and (17), we find for the
uncertainty relation

𝐼 ≡
√︁(︀

𝑥2 − 𝑥2
)︀(︀
𝑝2 − 𝑝2

)︀
=

~
2
. (18)

As was already shown by Schrödinger [1, 2], the un-
certainty 𝐼 (18) in the coherent state is minimal. For
the normal state of the oscillator, the uncertainty is
minimal only in the ground state.

In the coherent state, the energy of the oscillator
is not precisely determined. The quantum-mechanical
average of energy in the dynamical coherent state is
independent of time and can be expressed through
the averages of the squares of coordinate and mo-
mentum (17)

𝜀(𝜒) = ~𝜔
(︂⟨︀

Φ𝜒(𝑡)
⃒⃒
𝑎+𝑎

⃒⃒
Φ𝜒(𝑡)

⟩︀
+

1

2

)︂
=

= ~𝜔
(︂
|𝜒|2 + 1

2

)︂
=

𝑝2(𝑡)

2𝑀
+

𝑀𝜔2

2
𝑥2(𝑡). (19)

Thus, the dynamical coherent state is a state with
a constant average energy, in which there exists an
undamped motion and the phase symmetry is broken.

4. Discussion. Conclusions

The main feature of superfluid and superconducting
systems is the possibility of stationary flows of mass
or charge in them, which can exist for arbitrarily
long time without attenuation. The transition from
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the normal state to the superfluid or superconduct-
ing state is a phase transition. According to the gen-
eral theory of phase transitions [8], a phase transi-
tion to an ordered state should be accompanied by
the appearance of a new characteristic – the order
parameter. For a long time it was unclear what the
order parameter is in superconducting or superfluid
transitions. Even before the discovery of superfluid-
ity, L.V. Shubnikov [9] suggested a hypothesis that
the phase transition He I – He II is accompanied by
an ordering similar to the transition from a liquid to a
crystalline state. However, after superfluidity was dis-
covered [10, 11], it became unclear how such ordering
could support nondissipative flows. The correct form
of the order parameter in the framework of the phe-
nomenological description was proposed by Ginzburg
and Landau [12]. They used the complex macroscopic
wave function as an order parameter for supercon-
ductors. Such an order parameter allows one to con-
struct an expression for the macroscopic density of
the nondissipative flow, similar to the way the prob-
ability flux density is constructed in quantum me-
chanics. Since the macroscopic wave function, like the
wave function in quantum mechanics, is defined up to
an arbitrary phase factor, then such a state is called
a state with broken phase symmetry. In a simple ver-
sion for superconductors, a microscopic justification
of the Ginzburg–Landau theory on the basis of the
BCS theory [13] was given by Gorkov [14]. He showed
that the existence of superconducting properties is
associated with the appearance of the anomalous av-
erages. The phenomenological Ginzburg–Landau ap-
proach was extended by Ginzburg and Pitaevskii to
a superfluid Bose liquid [15]. The development of this
theory was continued in works [16, 17]. It should be
noted that in the well-known Landau theory of su-
perfluidity [18, 19] the violation of phase symmetry is
also implicitly taken into account through the intro-
duction of the superfluid density associated with the
modulus of the complex order parameter, and the su-
perfluid velocity determined by the phase gradient. In
Bose systems, a simple modeling of superfluidity at
zero temperature leads to the Gross–Pitaevskii equa-
tion [20, 21]. The macroscopic wave function in this
theory is the coherent state [22].

For the macroscopic complex wave function to ex-
ist, the system must have nonzero anomalous aver-
ages of the form ⟨𝑎𝑘1𝜎1

𝑎𝑘2𝜎2
⟩ or ⟨𝑎𝑘𝜎⟩ that violate the

phase symmetry. In this case, the macroscopic wave

function of the superconductor in the 𝑠-state will be
of the form

Ψ(r1, r2) ∼
∑︁
k1,k2

𝑒−𝑖(k1r1+k2r2)⟨𝑎k1↑𝑎k2↓⟩,

and the macroscopic wave function of the Bose system
of particles with zero spin – of the form

Ψ(r) ∼
∑︁
k

𝑒−𝑖kr⟨𝑎k⟩.

At present, as can already be seen from the cited
works, it is quite clear that in any physical system
where the phenomena of superfluidity or supercon-
ductivity exist, the phase symmetry must be neces-
sarily violated. At the same time, of course, each sys-
tem also has properties that are specific to it. Never-
theless, there has appeared and continues to appear a
large number of works devoted to this problem, where
the violation of the phase symmetry is absent. In this
case, there cannot be states with equilibrium nondis-
sipative flows [23].

However, the problem of establishing at the micro-
scopic level the connection between the coherence of
the state, the violation of the phase symmetry and
the existence of the nondissipative flows in multipar-
ticle Fermi and Bose systems continues to remain rele-
vant. In this paper, using a simple example of a quan-
tum harmonic oscillator, the connection is traced be-
tween the violation of the phase symmetry and the
existence of macroscopic motion in the dynamical co-
herent state. It is shown that, in contrast to the states
of the oscillator with a fixed energy, in which the av-
erage momentum is equal to zero, in the dynamical
coherent state it is different from zero and oscillates
according to the equation for a classical oscillator. At
the same time, in the DCS the phase-noninvariant
anomalous averages also turn out to be different
from zero.

Note that the energy in the considered DCS is de-
termined only by the phase-invariant average (19). In
more complex systems of interacting particles, energy
and other observable quantities are determined not
only by normal averages, but also by anomalous aver-
ages. Thus, coherent states, not being eigenfunctions
of some Hermitian operator, contribute to observable
quantities. An example of this is the gap in the spec-
trum of quasiparticle excitations of a superconduc-
tor. Being a measurable quantity, it is determined by
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the anomalous average. Thus, in states with broken
phase symmetry, the notion of a quantum-mechanical
observable quantity has a more general character than
in normal systems.

The author thanks A.A. Soroka for help in prepar-
ing the article.
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Ю.М.Полуектов

КОГЕРЕНТНIСТЬ, ПОРУШЕНА
СИМЕТРIЯ ТА НЕДИСИПАТИВНИЙ
РУХ КВАНТОВОГО ОСЦИЛЯТОРА

На прикладi квантового осцилятора розглянуто зв’язок
мiж динамiчним когерентним станом iз порушенням фа-
зової симетрiї та iснуванням недисипативного руху. У ба-
гаточастинкових системах взаємодiючих частинок подiбнi
стани проявляються як надплиннiсть та надпровiднiсть.

Ключ о в i с л о в а: квантовий осцилятор, когерентнi стани,
порушена фазова симетрiя, аномальнi та нормальнi середнi,
парнi кореляцiї, надплиннiсть, надпровiднiсть.
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