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CALCULATION OF THE HARTREE–FOCK ENERGIES
FOR p-TYPE SHELLS OF SOME NEGATIVE IONS

The energies of the subshells (2p, 3p) and selected atomic properties of several negative ions
(S(−1), Cl(−1), K(−1), and Sc(−1)) were calculated within the Hartree–Fock approximation. The
energies were evaluated for the atomic number 16 ≤ 𝑍 < 21. The study showed that the esti-
mates used to calculate the atomic properties using this method were accurate. The functions
𝐷(𝑟1) and 𝑓(𝑟12), which describe the probability of finding a single electron and two electrons
separated by a distance 𝑟12, respectively, were studied, and the values of the Hartree–Fock ex-
pectations ⟨𝑟𝑛12⟩, ⟨𝑟𝑛1 ⟩ were studied, where 𝑛 is the value between –2 to 2. The expected energy
value is ⟨𝐸𝐻𝐹 ⟩, ⟨𝑉𝑇 ⟩, ⟨𝑉𝑒𝑛⟩, ⟨𝑉𝑒𝑒⟩ and ⟨𝑇 ⟩ were calculated. We can conclude that the increas-
ing of an atomic number leads to the increasing of all the studied energies of the elements
under consideration. All functions were standard. The Mathcad 2014 application was used to
program the equations. Regarding the computations, they were all done in atomic units (a.u).

K e yw o r d s: Schrödinger equation, atomic properties, negative ion, Hartree–Fock energies.

1. Introduction

Quantum mechanics can be represented in many
ways, but the most common formulation is the Schrö-
dinger equation, to which the basic equations of all
quantum mechanical systems are governed. In the
simple case of time-independent systems, the Schrö-
dinger equation is given as follows [1, 2]

𝐻̂Ψ = 𝐸Ψ, (1)
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where 𝐸 is the energy, 𝐻̂ is the Hamiltonian, and 𝜓 is
the wave function. In general, the Hamiltonian factor
consists of

𝐻̂ = − ~2
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The Schrödinger equation has been solved for many
simple systems such as the hydrogen atom system
and hydrogen-like atoms, which allows for a complete
treatment of the electronic structure of the hydro-
gen atom and hydrogen-like atoms through the com-
plete and accurate solution of the Schrödinger equa-
tion and obtaining wave functions describing these
systems from these solutions, but such success can-
not be easily achieved for any atom other than the
hydrogen atom or atoms similar to it, because when
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there is more than one electron around the nucleus,
this causes the emergence of new forces, which are
the repulsive forces between electrons, which results
in an interaction energy inversely proportional to the
distance between the two electrons [3, 4].

Therefore, it is necessary to use approximation
techniques to make the problem solvable. At this
point, it becomes essential to understand the under-
lying mechanics of the problem. If important conclu-
sions are to be drawn from the process of solving the
problem, suitable approximations must be employed.
Among these approximations, the oldest and most
fundamental one is attributed to Hartree, who pos-
tulated that the total wave function 𝜓 (𝑟1, 𝑟2, ..., 𝑟𝑁 )
for 𝑁 electrons can be found by multiplying the wave
functions of a single particle [5, 6]

𝜓(𝑟1, 𝑟2, ..., 𝑟𝑁 ) = 𝜙1(𝑟1)𝜙2(𝑟2), ..., 𝜙𝑁 (𝑟𝑁 ) =

=

𝑖∏︁
𝑁=1

𝜙𝑖(𝑟𝑖), (3)

where 𝜙𝑖(𝑟𝑖) depends on the coordinates 𝑟𝑖 and the
spin of the electron. Since there is more than one elec-
tron, each of them must move independently of the
others according to Eq. (3), which states that each
electron moves within the average electrostatic po-
tential of the rest of the electrons. Equation (3) rep-
resents the Hartree product, which provides a mean-
field approximation but does not satisfy the anti-
symmetry requirement for fermionic wave functions
and therefore cannot serve as the complete electronic
wave function. This occurs as a result of electron-
electron interactions being incorrectly described by
the Hartree product wave function. By replacing the
Hartree product with a single Slater determinant, the
Hartree–Fock method enforces the antisymmetry of
the electronic wave function and ensures compliance
with the Pauli exclusion principle [7, 8]

𝜓HF (𝑟1, 𝑟2, ..., 𝑟𝑁 ) =

=
1√
𝑁 !

⎡⎢⎢⎣
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Φ2 (𝑥1) Φ2 (𝑥2) · · · Φ2 (𝑥𝑁 )

...
...

...
Φ𝑁 (𝑥1) Φ𝑁 (𝑥2) · · · Φ𝑁 (𝑥𝑁 )

⎤⎥⎥⎦, (4)

where 1√
𝑁 !

is the normalization of the wave func-
tion. The functions Φ𝑖 (𝑥𝑖𝑗) are spin orbitals defined
as products of spatial orbitals and spin functions, i.e.,

Φ𝑖 (𝑥𝑖𝑗) = 𝜙𝑖(𝑟)𝛼 or 𝜙𝑖(𝑟)𝛽. In this case, the variables
𝑥𝑖 include the spatial coordinates and the spin coordi-
nate of the electron. Since exchanging any pair of par-
ticles is equivalent to changing two columns, thereby
changing the sign of the determinant, it is clear that
the wave function 𝜓HF in Eq. (4) is antisymmetric. In
addition, two rows of the Slater determinant are iden-
tical according to the Pauli exclusion principle, and if
any two particles is in the same single-particle state,
the determinant is zero [9].

Froese–Fischer developed computational tech-
niques for the Hartree–Fock atomic equations. The
current review articles provide a comprehensive ex-
planation of the various methods developed in this
area and a summary of their uses [10, 11].

Q.S. Al-Khafaji, and A.S. Majali (2019) [12] us-
ing the Hartree–Fock (HF) wave function investigated
various physical properties and 1s and 2s energies of
negative ions in the ground state (Li−1, B−1, C−1,
N−1, O−1, and F−1) with atomic numbers (𝑍 = 3
to 9) and the first and second excited states of (B−1,
C−1, and N−1) where (𝑍 = 5 to 7). Since most of the
previous research focused on determining the energies
and examining the atomic properties of atoms and
positive ions, this type of work is relatively rare. The-
refore, the aim of our study was to investigate the
energies of negative ions.

2. Theory

Hartree–Fock theory stands out as one of the more
straightforward yet powerful methods for tackling the
intricate maze of many-electron systems. Its reach ex-
tends widely within the realm of quantum mechan-
ics, finding utility across a spectrum of fields – think
atomic structures, molecular interactions, and the
dense fabric of solid-state physics, all the way through
to the nuances of nuclear interactions and elemen-
tary particle fields. At its core, this method hinges
on two key ideas: the central field approximation and
the variation principle. Now, let’s break that down
a bit. The central field approximation paints a pic-
ture where electrons behave like solitary wanderers,
moving independently within an average field gener-
ated by the nucleus, while also assuming that this
average potential is neatly spherical. It’s a bit like
imagining a bustling city where each person walks
their own path, but there’s a common background
vibe influencing them all. Merging this approxima-
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tion with the variation principle, we arrive at the re-
stricted Hartree–Fock equations, determine the spin
orbitals of the system, from which the one-particle
radial density distribution 𝐷(𝑟1) can subsequently be
constructed [10, 12].

But why is 𝐷(𝑟1) such a big deal? Think of it as
a map for understanding the electrons nestled within
an atom! This crucial distribution reveals the likeli-
hood of spotting electrons in each shell around the
nucleus. In essence, it sketches out how one electron is
likely to spread itself across the different shells, serv-
ing as a foundation for further explorations into the
electronic landscape of atoms [13].

2.1. Radial density distribution
function of a single-particle 𝐷(𝑟1)

The probability of finding electrons in each electron
shell is given by the single-particle radial density dis-
tribution function 𝐷(𝑟1), which is defined as follows
and is necessary to search for electrons in the ion
[13, 14]:

𝐷 (𝑟1) =

∞∫︁
0

𝐷 (𝑟1, 𝑟2) 𝑑𝑟2. (5)

2.2. Single-particle expectation value
⟨︀
𝑟𝑛1

⟩︀
The following formula describes the radial probability
density of an electron and the probability of finding
it at a particular distance from the nucleus [14, 15]

⟨𝑟𝑛1 ⟩ =
∞∫︁
0

𝐷 (𝑟1) 𝑟
𝑛
1 𝑑𝑟1. (6)

2.3. The distribution function
of electrons 𝑓(𝑟12)

The electron distribution function describes the prob-
ability of finding two electrons separated by 𝑟12
[16, 17]
𝑓𝑖𝑗 (𝑟12) =

∫︁
Γ𝑖𝑗 (𝑟1, 𝑟2) 𝑑𝑟1𝑑𝑟2. (7)

Here, the indices (𝑖, 𝑗) label the two electrons (or spin
orbitals) under consideration.

2.4. Two electrons expectation values
⟨︀
𝑟𝑛12

⟩︀
The following equation represents the expected value
of the distance between two electrons [14]:

⟨𝑟𝑛12⟩ =
∞∫︁
0

𝑓 (𝑟12) 𝑟
𝑛
12𝑑𝑟12. (8)

2.5. Standard deviation values Δ𝑟1,Δ𝑟12

According to the following equations, the “standard
deviation” is the extent to which the single-electron
distance and the distance between two electrons differ
from their expected values [18]

Δ𝑟1 =

√︁
⟨𝑟21⟩ − ⟨𝑟1⟩2, (9)

Δ𝑟12 =

√︁
⟨𝑟212⟩ − ⟨𝑟12⟩2. (10)

2.6. The energy expectation value ⟨𝐸⟩
According to the virial theorem for Coulombic sys-
tems, the expectation values of the kinetic and po-
tential energies satisfy the relation [19–21]

⟨𝑇 ⟩ = −⟨𝑉 ⟩
2
, (11)

⟨𝑉 ⟩ = 𝑍

⟨
1

𝑟1

⟩
+

⟨
1

𝑟12

⟩
. (12)

3. Results

Using the equations related to the desired quantities,
the calculations were implemented in Mathcad 2014
to obtain the results, which were subsequently doc-
umented in the tables below, and the relationship of
the data was plotted.

Table 1 shows the relationship between the maxi-
mum electron presence values 𝐷max(𝑟1) and the cor-
responding position values 𝑟1. Table 2 shows the ex-
pected electron distances ⟨𝑟𝑛1 ⟩ from the nucleus and
their standard deviations Δ𝑟1 for different values of

Table 1. Hartree–Fock wave function
values for positions and maximum values
of 𝐷(𝑟1) for subshells in a.u.

Ions Atomic
number

Shell Peak 𝑟1 𝐷max(𝑟1)

S−1 16 2p Peak1 0.32700 2.11329
3p Peak1 0.26550 0.082334

Peak2 1.67500 0.46738

Cl−1 17 2p Peak1 0.30330 2.30580
3p Peak1 0.24400 0.10095

Peak2 1.47930 0.53973

K−1 19 2p Peak1 0.26390 2.68880
3p Peak1 0.21000 0.17399

Peak2 1.16300 0.79510

Sc−1 21 2p Peak1 0.23360 3.07260
3p Peak1 0.18460 0.23289

Peak2 0.97750 0.97734
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𝑛, which is an integer. Table 3 shows the relation-
ship between the maximum values of the interatomic
distribution function 𝑓max(𝑟12) and their correspond-
ing location values 𝑟12. Table 4 shows the expected
interatomic distance values ⟨𝑟𝑛12⟩ and their standard
deviations Δ𝑟1 for different values of 𝑛, which is an
integer.

Table 2. Expectation values
⟨︀
𝑟𝑛
1

⟩︀
and standard

deviation where −2 ≤ 𝑛 ≤ 2 for subshells in a.u.

Ions Shells ⟨𝑟−2
1 ⟩ ⟨𝑟−1

1 ⟩ ⟨𝑟+1
1 ⟩ ⟨𝑟+2

1 ⟩ Δ𝑟1

S−1 2p 12.20200 2.95400 0.44100 0.24200 0.21818
3p 0.80200 0.59400 2.32100 6.70900 1.15003

Cl−1 2p 14.28700 3.20300 0.40500 0.20400 0.19881
3p 1.04300 0.68000 2.02800 5.09700 0.99235

K−1 2p 18.92600 3.69700 0.34900 0.15100 0.16942
3p 1.94700 0.93900 1.43700 2.44000 0.61277

Sc−1 2p 24.23100 4.19200 0.30700 0.11600 0.14755
3p 2.86700 1.14200 1.18700 1.65900 0.50094

Table 3. Hartree–Fock wave function
values for 𝑟12 and maximum values of 𝑓max(𝑟12)

for subshells in a.u.

Ions Atomic
number

Shell 𝑟12 𝑓max

S−1 16 2p 0.51800 1.45460
3p 2.73800 0.28381

Cl−1 17 2p 0.47800 1.58620
3p 2.41200 0.32591

K−1 19 2p 0.41400 1.84670
3p 1.81700 0.46941

Sc−1 21 2p 0.36500 2.10700
3p 1.51300 0.56861

Table 4. Expectation values
⟨︀
𝑟𝑛
12

⟩︀
and standard

deviation where −2 ≤ 𝑛 ≤ 2 for subshells in a.u.

Ions Shells ⟨𝑟−2
1 ⟩ ⟨𝑟−1

1 ⟩ ⟨𝑟+1
1 ⟩ ⟨𝑟+2

1 ⟩ Δ𝑟1

S−1 2p 6.98305 2.07865 0.63115 0.48430 0.29317
3p 0.25687 0.39610 3.31475 13.41832 1.55909

Cl−1 2p 8.23654 2.25937 0.57961 0.40772 0.26789
3p 0.33513 0.45263 2.89318 10.19446 1.35055

K−1 2p 11.03341 2.61806 0.49909 0.30162 0.22919
3p 0.64211 0.63040 2.02920 4.87971 0.87295

Sc−1 2p 14.24415 2.97702 0.43813 0.23210 0.20035
3p 0.94176 0.76251 1.67511 3.31854 0.71591

Table 5 shows the values of the attractive energy
−⟨𝑉𝑒𝑛⟩ between the electron and the nucleus, the re-
pulsive energy ⟨𝑉𝑒𝑒⟩ between the electrons, the total
potential energy −⟨𝑉𝑇 ⟩, the kinetic energy ⟨𝑇 ⟩ and
the total energy (Hartree–Fock energy) −⟨𝐸𝑇 ⟩ for
each shell.

Figure 1 shows the relationship between the change
in the electron distribution function and the position
values of the studied elements, while Fig. 2 shows
the relationship between the interatomic distribution
function and the interatomic distance values.

4. Discussion

By applying the above equations, the results were sys-
tematically tabulated and plotted. Table 1 and Fig. 1
present several results indicating that the probability
of detecting an electron increases as the distance be-
tween the electron and the nucleus decreases and the
maximum values of 𝐷(𝑟1) increase with increasing
𝑟1. Moreover, we note that these peaks are concen-
trated in the vicinity of the nucleus, where we also
observe the maximum probability density distribu-
tion function for the systems under study. For the
negative ion systems under study, the maximum val-
ues of the single-particle radial density distribution
function 𝐷(𝑟1) increase with increasing atomic num-
ber 𝑍 for each shell (2p) and (3p). This increase in
values is due to the increasing force of attraction be-
tween the nucleus and the electrons with increasing
atomic number. It is also important to note that in
Fig. 1, as the positions of the extreme values of 𝑟1 de-
crease, the probability of finding an electron is zero
when the distance is zero. This means that the elec-
tron cannot be inside the nucleus, but when the dis-

Table 5. Expectation values
for all attraction, repulsion potential, kinetic
and total energy for subshells in a.u.

Ions Shells −⟨𝑉𝑒𝑛⟩ 𝑡⟨𝑉𝑒𝑒⟩ ⟨𝑉𝑇 ⟩ ⟨𝑇 ⟩ −⟨𝐸𝑇 ⟩

S−1 2p 94.28000 2.07865 92.44935 46.22468 46.22468
3p 19.00800 0.39610 18.61190 9.30595 9.30595

Cl−1 2p 108.90200 2.25937 106.64263 53.32131 53.32131
3p 23.12000 0.45263 22.66737 11.33369 11.33369

K−1 2p 140.48600 2.61806 137.86794 68.93397 68.93397
3p 35.68200 0.63040 35.05160 17.52580 17.52580

Sc−1 2p 176.06400 2.97702 173.08698 86.54349 86.54349
3p 47.96400 0.76251 47.20149 23.60074 23.60074
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Fig. 1. Relationship between the location 𝑟1 and the one particle radial density distribution func-
tion 𝐷(𝑟1)

Fig. 2. The relationship between 𝑟12 and the inter-particle distribution function

tance is far the probability of finding an electron is
zero, which means that the electron cannot be outside
the atom.

According to Fig. 1, there is only one peak repre-
senting the probability of finding an electron in the
2p shell and two peaks reflecting the probability of
finding an electron in the 3p shell. The second peak
shows the probability of finding an electron in the 3p
shell, while the first peak depicts an electron that can
penetrate the 2p shell or remain in it briefly.

Table 3 and Fig. 2 show that the effect of the nu-
clear attractive force leads to an increase in the proba-
bility of the distribution function 𝑓(𝑟12) between par-
ticles with increasing atomic number 𝑍. We notice
from Table 3 that the probability of finding two elec-
trons in the 2p shell separated by a distance 𝑟12 at
the same time is higher than the probability of that
in the 3p shell. Because the 2p shell is closer to the
nucleus than the 3p shell, the distance between the
two electrons becomes smaller, which increases the
probability of finding the two electrons.

For all shells (2p and 3p), Tables 2 and 4 show
that when 𝑛 is negative, the expected values (⟨𝑟𝑛1 ⟩
and ⟨𝑟𝑛12⟩) for the negative ions in question grow with
increasing atomic numbers. Conversely, when n is
positive, the reverse happens. As the atomic number
of all shells increases, the standard deviations (Δ𝑟1
and Δ𝑟12) obviously decrease.

According to Table 5, the calculated values of all
energies (−⟨𝑉𝑒𝑛⟩, ⟨𝑉𝑒𝑒⟩, −⟨𝑉𝑇 ⟩, ⟨𝑇 ⟩, and −⟨𝐸𝑇 ⟩) in-
crease with increasing atomic number for all stud-
ied negative ion shells. The table also shows that the
binding energy between the electrons and the nucleus
increases as the distance between the electrons de-
creases, which leads to an increase in the force of
repulsion between the electrons. Since other energies
depend on (−⟨𝑉𝑒𝑛⟩, ⟨𝑉𝑒𝑒⟩), this results in an increase
in the remaining energy terms.

5. Conclusion
According to the present study, the conclusions of the
HF method for all shells under investigation is that
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with increasing atomic number, the maximum values
of the single-particle radial density distribution func-
tion 𝐷(𝑟1) and the interparticle distribution function
𝑓(𝑟12) increase, and their positions decrease. As the
atomic number increases, the values ⟨𝑟𝑛1 ⟩ and ⟨𝑟𝑛12⟩
decrease for positive n values, while they increase
for negative 𝑛 values. In this regime, the standard
deviations (Δ𝑟1 and Δ𝑟12) decrease as the atomic
number increases. Within the Hartree–Fock approx-
imation, the calculated expectation values of the ki-
netic, potential, and total energies increase with in-
creasing atomic number for the considered negative
ions. These estimates and Hartree–Fock calculations
are used to provide a theoretical database for this set
of systems for future use by researchers.
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М.Дж.Аль-Шараа, Х.Ю.Я.Аль-Казраджi,
К.Ш.Аль Хафаджi, Ш.А.Кадхiм

РОЗРАХУНОК ЕНЕРГIЙ ХАРТРI–ФОКА
ОБОЛОНОК p-ТИПУ ДЕЯКИХ НЕГАТИВНИХ IОНIВ

Розраховано енергiї пiдоболонок (2p, 3p) та деякi важли-
вi атомнi властивостi низки iонiв (S(−1), Cl(−1), K(−1) та
Sc(−1)) за допомогою методу Хартрi–Фока. Енергiї оцiнено
для атомних номерiв 16 ≤ 𝑍 < 21. Дослiдження показа-
ло, що оцiнки, використанi для розрахунку атомних вла-
стивостей за допомогою цього методу, були точними. Було
дослiджено функцiї 𝐷(𝑟1) та 𝑓(𝑟12), якi, вiдповiдно, опису-
ють ймовiрнiсть знаходження одного електрона та двох еле-
ктронiв, роздiлених вiдстанню 𝑟12, а також дослiджено ймо-
вiрностi Хартрi–Фока ⟨𝑟𝑛12⟩, ⟨𝑟𝑛1 ⟩, де 𝑛 – значення вiд –2 до 2.
Було розраховано значення енергiї ⟨𝐸HF⟩, ⟨𝑉𝑇 ⟩, ⟨𝑉𝑒𝑛⟩, ⟨𝑉𝑒𝑒⟩
та ⟨𝑇 ⟩. Можна зробити висновок, що збiльшення атомного
номера приводить до збiльшення всiх дослiджуваних енер-
гiй розглянутих елементiв. Усi функцiї були стандартни-
ми. Для програмування рiвнянь використовувався додаток
Mathcad 2014. Щодо обчислень, то всi вони були виконанi
в атомних одиницях (а.о.).

Ключ о в i с л о в а: рiвняння Шредiнгера, атомнi властиво-
стi, негативний iон, енергiї Хартрi–Фока.
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